Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mol Model ; 30(8): 294, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39080111

RESUMO

CONTEXT: Hydrazones have been studied for a myriad of chemical and physiochemical properties, such as sensors, chelators and numerous biological activities. Experimental data indicates that hydrazones are unstable under cathodic potentials irrespective of the solvent. The single electron reduction of hydrazones to produce radical anions result in unstable species that cleaves at the N-N bond in a heterolytic manner. The literature has proposed a mechanism favouring the radical on the imine moiety, however in this study DFT calculations suggest the radical on the amine product is more likely upon bond cleavage. This has implications on electrochemical mechanisms, and the active molecule in biological studies viz the method of delivery to target areas. METHODS: Density functional theory calculations were carried out using the GAMESS software package. The structures were optimized in the gas phase (B3LYP/6-31G(d,p)) as indicated by the absence of imaginary frequencies in the Hessian, and in CH3CN (B3LYP/6-31G(d,p)/SMD) with the Pople polarization functions. As a comparison, selected pathways were fully optimized using PBE0/6-31G(d,p) and PBE0/6-31G(d,p)/SMD for gas phase and CH3CN, respectively with the Pople polarization functions. The values were not significantly different (< 5% difference). As such only the B3LYP is evaluation is discussed.

2.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064952

RESUMO

The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme's dispersion with Becke-Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50-800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system.

3.
ACS Appl Mater Interfaces ; 16(30): 39251-39265, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39021197

RESUMO

The cubic α-CsPbI3 phase stands out as one of the most promising perovskite compounds for solar cell applications due to its suitable electronic band gap of 1.7 eV. However, it exhibits structural instability under operational conditions, often transforming into the hexagonal non-perovskite δ-CsPbI3 phase, which is unsuitable for solar cell applications because of the large band gap (e.g., ∼2.9 eV). Thus, there is growing interest in identifying possible mechanisms for increasing the stability of the cubic α-CsPbI3 phase. Here, we report a theoretical investigation, based on density functional theory calculations, of the surface passivation of the α-, γ-, and δ-CsPbI3(100) surfaces using the C6H4(NH3)2 [p-phenylenediamine (PPD)] and Cs species as passivation agents. Our calculations and analyses corroborate recent experimental findings, showing that PPD passivation effectively stabilizes the cubic α-CsPbI3 perovskite against the cubic-to-hexagonal phase transition. The PPD molecule exhibits covalent-dominating bonds with the substrate, which makes it more resistant to distortion than the ionic bonds dominant in perovskite bulks. By contrasting these results with the natural Cs passivation, we highlight the superior stability of the PPD passivation, as evidenced by the negative surface formation energies, unlike the positive values observed for the Cs passivation. This disparity is due to the covalent characteristics of the molecule/surface interaction of PPD, as opposed to the purely ionic interaction seen with the Cs passivation. Notably, the PPD passivation maintains the optoelectronic properties of the perovskites because the electronic states derived from the PPD molecules are localized far from the band gap region, which is crucial for optoelectronic applications.

4.
J Mol Model ; 30(8): 268, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012396

RESUMO

CONTEXT: In the realm of quantum chemistry, the accurate prediction of electronic structure and properties of nanostructures remains a formidable challenge. Density functional theory (DFT) and density matrix renormalization group (DMRG) have emerged as two powerful computational methods for addressing electronic correlation effects in diverse molecular systems. We compare ground-state energies ( e 0 ), density profiles ( n ), and average entanglement entropies ( S ¯ ) in metals, insulators and at the transition from metal to insulator, in homogeneous, superlattices, and harmonically confined chains described by the fermionic one-dimensional Hubbard model. While for the homogeneous systems, there is a clear hierarchy between the deviations, D % ( S ¯ ) < D % ( e 0 ) < D ¯ % ( n ) , and all the deviations decrease with the chain size; for superlattices and harmonic confinement, the relation among the deviations is less trivial and strongly dependent on the superlattice structure and the confinement strength considered. For the superlattices, in general, increasing the number of impurities in the unit cell represents lower precision in the DFT calculations. For the confined chains, DFT performs better for metallic phases, while the highest deviations appear for the Mott and band-insulator phases. This work provides a comprehensive comparative analysis of these methodologies, shedding light on their respective strengths, limitations, and applications. METHODS: The DFT calculations were performed using the standard Kohn-Sham scheme within the BALDA approach. It integrated the numerical Bethe-Ansatz (BA) solution of the Hubbard model as the homogeneous density functional within a local-density approximation (LDA) for the exchange-correlation energy. The DMRG algorithms were implemented using the ITensor library, which is based on the matrix product states (MPS) ansatz. The calculations were performed until the energy reaches convergence of at least 10 - 8 .

5.
Artigo em Inglês | MEDLINE | ID: mdl-38990833

RESUMO

Machine learning interatomic potentials (MLIPs) are one of the main techniques in the materials science toolbox, able to bridge ab initio accuracy with the computational efficiency of classical force fields. This allows simulations ranging from atoms, molecules, and biosystems, to solid and bulk materials, surfaces, nanomaterials, and their interfaces and complex interactions. A recent class of advanced MLIPs, which use equivariant representations and deep graph neural networks, is known as universal models. These models are proposed as foundation models suitable for any system, covering most elements from the periodic table. Current universal MLIPs (UIPs) have been trained with the largest consistent data set available nowadays. However, these are composed mostly of bulk materials' DFT calculations. In this article, we assess the universality of all openly available UIPs, namely MACE, CHGNet, and M3GNet, in a representative task of generalization: calculation of surface energies. We find that the out-of-the-box foundation models have significant shortcomings in this task, with errors correlated to the total energy of surface simulations, having an out-of-domain distance from the training data set. Our results show that while UIPs are an efficient starting point for fine-tuning specialized models, we envision the potential of increasing the coverage of the materials space toward universal training data sets for MLIPs.

6.
ACS Appl Mater Interfaces ; 16(24): 31500-31512, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38842224

RESUMO

The increasing global demand for food and agrarian development brings to light a dual issue concerning the use of substances that are crucial for increasing productivity yet can be harmful to human health and the environment when misused. Herein, we combine insights from high-level quantum simulations and experimental findings to elucidate the fundamental physicochemical mechanisms behind developing graphene-based nanomaterials for the adsorption of emerging contaminants, with a specific focus on pesticide glyphosate (GLY). We conducted a comprehensive theoretical and experimental investigation of graphene-based supports as promising candidates for detecting, sensing, capturing, and removing GLY applications. By combining ab initio molecular dynamics and density functional theory calculations, we explored several chemical environments encountered by GLY during its interaction with graphene-based substrates, including pristine and punctual defect regions. Our results unveiled distinct interaction behaviors: physisorption in pristine and doped graphene regions, chemisorption leading to molecular dissociation in vacancy-type defect regions, and complex transformations involving the capture of N and O atoms from impurity-adsorbed graphene, resulting in the formation of new GLY-derived compounds. The theoretical findings were substantiated by FTIR and Raman spectroscopy, which proposed a mechanism explaining GLY adsorption in graphene-based nanomaterials. The comprehensive evaluation of adsorption energies and associated properties provides valuable insights into the intricate nature of these interactions, shedding light on potential applications and guiding future experimental investigations of graphene-based nanofilters for water decontamination.

7.
Chemphyschem ; 25(16): e202400118, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38742372

RESUMO

In recent decades, two-dimensional (2D) perovskites have emerged as promising semiconductors for next-generation photovoltaics, showing notable advancements in solar energy conversion. Herein, we explore the impact of alternative inorganic lattice BX-based compositions (B=Ge or Sn, X=Br or I) on the energy gap and stability. Our investigation encompasses BA2Man-1BnX3n+1 2D Ruddlesden-Popper perovskites (for n=1-5 layers) and 3D bulk (MA)BX3 systems, employing first-principles calculations with spin-orbit coupling (SOC), DFT-1/2 quasiparticle, and D3 dispersion corrections. The study unveils how atoms with smaller ionic radii induce anisotropic internal and external distortions within the inorganic and organic lattices. Introducing the spacers in the low-layer regime reduces local distortions but widens band gaps. Our calculation protocol provides deeper insights into the physics and chemistry underlying 2D perovskite materials, paving the way for optimizing environmentally friendly alternatives that can efficiently replace with sustainable materials.

8.
Sci Rep ; 14(1): 11710, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778075

RESUMO

In this paper, we investigate the optical, electronic, vibrational, and excitonic properties of four two-dimensional ß -pnictogen materials-nitrogenene, phosphorene, arsenene, and antimonene-via density functional theory calculations and the Bethe-Salpeter equation. These materials possess indirect gaps with significant exciton binding energies, demonstrating isotropic behavior under circular light polarization and anisotropic behavior under linear polarization by absorbing light within the visible solar spectrum (except for nitrogenene). Furthermore, we observed that Raman frequencies red-shift in heavier pnictogen atoms aligning with experimental observations; simultaneously, quasi-particle effects notably influence the linear optical response intensively. These monolayers' excitonic effects lead to optical band gaps optimized for solar energy harvesting, positioning them as promising candidates for advanced optoelectronic device applications.

9.
J Phys Condens Matter ; 36(34)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38744299

RESUMO

Phosphorene is a recently developed two-dimensional (2D) material that has attracted tremendous attention because of its unique anisotropic optical properties and quasi-one-dimensional (1D) excitons. We use first-principles calculations combined with the maximally localized Wannier function tight binding Hamiltonian and Bethe-Salpeter equation (BSE) formalism to investigate quasiparticle effects of 2D and quasi-1D blue and black phosphorene nanoribbons. Our electronic structure calculations shows that both blue and black monolayered phases are semiconductors. On the other hand black phosphorene zigzag nanoribbons are metallic. Similar behavior is found for very thin blue phosphorene zig-zag and armchair nanoribbon. As a general behavior, the exciton binding energy decreases as the ribbon width increases, which highlights the importance of quantum confinement effects. The solution of the BSE shows that the blue phosphorene monolayer has an exciton binding energy four times higher than that of the black phosphorene counterpart. Furthermore, both monolayers show a different linear optical response with respect to light polarization, as black phosphorene is highly anisotropic. We find a similar, but less pronounced, optical anisotropy for blue phosphorene monolayer, caused exclusively by the quasi-particle effects. Finally, we show that some of the investigated nanoribbons show a spin-triplet excitonic insulator behavior, thus revealing exciting features of these nanoribbons and therefore provides important advances in the understanding of quasi-one dimensional phosphorus-based materials.

10.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732218

RESUMO

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Assuntos
Benzaldeídos , Benzaldeídos/química , Espectroscopia de Ressonância Magnética , Teoria da Densidade Funcional , Flúor/química , Boro/química , Modelos Moleculares , Ésteres/química , Espectrofotometria Infravermelho , Estrutura Molecular , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA