Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Expert Opin Drug Discov ; 19(8): 975-990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963148

RESUMO

INTRODUCTION: Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED: Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION: In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.


Assuntos
Anticonvulsivantes , Descoberta de Drogas , Epilepsia , Humanos , Anticonvulsivantes/farmacologia , Descoberta de Drogas/métodos , Epilepsia/tratamento farmacológico , Animais , Desenvolvimento de Medicamentos/métodos , Terapia de Alvo Molecular , Farmacologia em Rede , Epilepsia Resistente a Medicamentos/tratamento farmacológico
2.
Comput Biol Chem ; 112: 108145, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002224

RESUMO

The prediction of possible lead compounds from already-known drugs that may present DPP-4 inhibition activity imply a advantage in the drug development in terms of time and cost to find alternative medicines for the treatment of Type 2 Diabetes Mellitus (T2DM). The inhibition of dipeptidyl peptidase-4 (DPP-4) has been one of the most explored strategies to develop potential drugs against this condition. A diverse dataset of molecules with known experimental inhibitory activity against DPP-4 was constructed and used to develop predictive models using different machine-learning algorithms. Model M36 is the most promising one based on the internal and external performance showing values of Q2CV = 0.813, and Q2EXT = 0.803. The applicability domain evaluation and Tropsha's analysis were conducted to validate M36, indicating its robustness and accuracy in predicting pIC50 values for organic molecules within the established domain. The physicochemical properties of the ligands, including electronegativity, polarizability, and van der Waals volume were relevant to predict the inhibition process. The model was then employed in the virtual screening of potential DPP4 inhibitors, finding 448 compounds from the DrugBank and 9 from DiaNat with potential inhibitory activity. Molecular docking and molecular dynamics simulations were used to get insight into the ligand-protein interaction. From the screening and the favorable molecular dynamic results, several compounds including Skimmin (pIC50 = 3.54, Binding energy = -8.86 kcal/mol), bergenin (pIC50 = 2.69, Binding energy = -13.90 kcal/mol), and DB07272 (pIC50 = 3.97, Binding energy = -25.28 kcal/mol) seem to be promising hits to be tested and optimized in the treatment of T2DM. This results imply a important reduction in cost and time on the application of this drugs because all the information about the its metabolism is already available.


Assuntos
Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Descoberta de Drogas , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/química , Humanos , Estrutura Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico
3.
Biomolecules ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062489

RESUMO

Designing and developing inhibitors against the epigenetic target DNA methyltransferase (DNMT) is an attractive strategy in epigenetic drug discovery. DNMT1 is one of the epigenetic enzymes with significant clinical relevance. Structure-based de novo design is a drug discovery strategy that was used in combination with similarity searching to identify a novel DNMT inhibitor with a novel chemical scaffold and warrants further exploration. This study aimed to continue exploring the potential of de novo design to build epigenetic-focused libraries targeted toward DNMT1. Herein, we report the results of an in-depth and critical comparison of ligand- and structure-based de novo design of screening libraries focused on DNMT1. The newly designed chemical libraries focused on DNMT1 are freely available on GitHub.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Desenho de Fármacos , Inibidores Enzimáticos , Ligantes , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
Curr Drug Targets ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38847165

RESUMO

INTRODUCTION: Chikungunya fever is a disease caused by infection with the Chikungunya virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Despite its self-limited character, more than 60% of patients have chronic recurrent arthralgia with debilitating pain that lasts for years. AIM: The objective of this review was to gather and analyze evidence from the literature on potential therapeutic strategies with molecules from natural products for the treatment of Chikungunya fever. METHODS: A search was performed for clinical trials, observational studies, in vitro or in vivo, without restriction of the year of publication or language in electronic databases (Medline/PubMed, EMBASE, Google Scholar, The Cochrane Library, LILACS (BVS), clinical trial registries (Clinical Trials.gov), digital libraries from CAPES theses and dissertations (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and conference abstracts. A quality assessment of the selected studies was performed using the SYRCLE, RoB2 and SciRAP tools. RESULTS: 42 studies were included, which showed molecules with potential antiviral pharmacological activity or with activity in reducing the joint complications caused by CHIKV infection. CONCLUSIONS: Among the molecules found in the survey of references, regarding the class of secondary metabolites, flavonoids stood out and for this reason, the molecules may be promising candidates for future clinical trials. Overall, evidence from in vitro studies was of acceptable quality; in vivo and intervention studies showed a high risk of bias, which is a limitation of these studies.

5.
Mol Inform ; : e202400060, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837557

RESUMO

Natural product databases are an integral part of chemoinformatics and computer-aided drug design. Despite their pivotal role, a distinct scarcity of projects in Latin America, particularly in Mexico, provides accessible tools of this nature. Herein, we introduce BIOMX-DB, an open and freely accessible web-based database designed to address this gap. BIOMX-DB enhances the features of the existing Mexican natural product database, BIOFACQUIM, by incorporating advanced search, filtering, and download capabilities. The user-friendly interface of BIOMX-DB aims to provide an intuitive experience for researchers. For seamless access, BIOMX-DB is freely available at www.biomx-db.com.

6.
Front Pharmacol ; 15: 1403203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873424

RESUMO

Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.

7.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856172

RESUMO

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Peptídeos , Peptídeos/química , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Descoberta de Drogas/métodos , Humanos , Desenho de Fármacos , Aprendizado de Máquina , Biologia Computacional/métodos
8.
Pharmaceuticals (Basel) ; 17(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38931370

RESUMO

Despite the vast global botanical diversity, the pharmaceutical development of herbal medicinal products (HMPs) remains underexploited. Of over 370,000 described plant species, only a few hundred are utilized in HMPs. Most of these have originated from traditional use, and only a minority come from megadiverse countries. Exploiting the pharmacological synergies of the hundreds of compounds found in poorly studied plant species may unlock new therapeutic possibilities, enhance megadiverse countries' scientific and socio-economic development, and help conserve biodiversity. However, extensive constraints in the development process of HMPs pose significant barriers to transforming this unsatisfactory socio-economic landscape. This paper proposes a roadmap to overcome these challenges, based on the technology readiness levels (TRLs) introduced by NASA to assess the maturity of technologies. It aims to assist research entities, manufacturers, and funding agencies from megadiverse countries in the discovery, development, and global market authorization of innovative HMPs that comply with regulatory standards from ANVISA, EMA, and FDA, as well as WHO and ICH guidelines.

9.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38931408

RESUMO

This work examines the current landscape of drug discovery and development, with a particular focus on the chemical and pharmacological spaces. It emphasizes the importance of understanding these spaces to anticipate future trends in drug discovery. The use of cheminformatics and data analysis enabled in silico exploration of these spaces, allowing a perspective of drugs, approved drugs after 2020, and clinical candidates, which were extracted from the newly released ChEMBL34 (March 2024). This perspective on chemical and pharmacological spaces enables the identification of trends and areas to be occupied, thereby creating opportunities for more effective and targeted drug discovery and development strategies in the future.

10.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931417

RESUMO

BACKGROUND: Peru is one of the most biodiverse countries in the world, which is reflected in its wealth of knowledge about medicinal plants. However, there is a lack of information regarding intestinal absorption and the permeability of natural products. The human colon adenocarcinoma cell line (Caco-2) is an in vitro assay used to measure apparent permeability. This study aims to develop a quantitative structure-property relationship (QSPR) model using machine learning algorithms to predict the apparent permeability of the Caco-2 cell in natural products from Peru. METHODS: A dataset of 1817 compounds, including experimental log Papp values and molecular descriptors, was utilized. Six QSPR models were constructed: a multiple linear regression (MLR) model, a partial least squares regression (PLS) model, a support vector machine regression (SVM) model, a random forest (RF) model, a gradient boosting machine (GBM) model, and an SVM-RF-GBM model. RESULTS: An evaluation of the testing set revealed that the MLR and PLS models exhibited an RMSE = 0.47 and R2 = 0.63. In contrast, the SVM, RF, and GBM models showcased an RMSE = 0.39-0.40 and R2 = 0.73-0.74. Notably, the SVM-RF-GBM model demonstrated superior performance, with an RMSE = 0.38 and R2 = 0.76. The model predicted log Papp values for 502 natural products falling within the applicability domain, with 68.9% (n = 346) showing high permeability, suggesting the potential for intestinal absorption. Additionally, we categorized the natural products into six metabolic pathways and assessed their drug-likeness. CONCLUSIONS: Our results provide insights into the potential intestinal absorption of natural products in Peru, thus facilitating drug development and pharmaceutical discovery efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA