Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 190: 114568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945598

RESUMO

The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.


Assuntos
Cacau , Fermentação , Microbiologia de Alimentos , Chá de Kombucha , Cacau/microbiologia , Cacau/química , Chá de Kombucha/microbiologia , Chá/microbiologia , Chá/química , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Probióticos
2.
Food Res Int ; 174(Pt 1): 113569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986521

RESUMO

Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.


Assuntos
Ácido Acético , Chá , Ácido Acético/análise , Fermentação , Bebidas/análise , Etanol/análise , Polifenóis/análise
3.
Foods ; 12(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36673335

RESUMO

Fermentation is an important tool in producing functional beverages through agro-industrial wastes, and medicinal and aromatic plants due to the specific content of bioactive molecules. Therefore, this study evaluated the contribution of Matricaria recutita (chamomile), Cymbopogon citratus (lemongrass), or Mentha piperita (peppermint) extracts to the phytochemical profile and potential biological effects of a functional fermented orange beverage in vitro and in silico. The concentrations of aromatic herbal extracts that yielded the best sensory performance for fermented beverages were selected for analyses that involved characterizing the fermented beverages. The beverages that received the extracts (2%) had the highest phenolic and flavonoid content and antioxidant potential compared to the control. Hesperidin (124-130 mg L-1), narirutin (66-70 mg L-1), chlorogenic (11-16 mg L-1), caffeic (5.3-5.5 mg L-1), and ferulic (1-1.7 mg L-1) acids were found in the different formulations. The in silico analysis suggested that the evaluated compounds do not present a toxicity risk (mutagenicity, carcinogenicity, hepatotoxicity, and ability to penetrate the blood-brain barrier). Additionally, they can contribute to the biological effects of therapeutic importance, such as antioxidant, gastroprotective, and anti-ulcerative properties, and the Mentha piperita L. extract presented the greatest potential among the evaluated herbs for use in functional fermented beverages.

4.
Food Chem ; 412: 135556, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36708672

RESUMO

In this study, arabic coffee infusion was used to produce a fermented beverage known as kombucha. The physicochemical, antioxidant and antimicrobial activities, as well as in vivo toxicity were evaluate throughout 21 days of fermentation. Reduction in pH and sugar levels were observed throughout the fermentation period. There was no significant difference in the content of total phenolic compounds between the unfermented and fermented beverage, nor between the fermentation times, as well as in the antioxidant activity. The 5-caffeoylquinic acid was identified at all fermentation times evaluated, and no significant difference was observed regarding its concentration. It showed antibacterial and antifungal activity against all strains tested. No toxic effect of the beverages was observed in the in vivo model (Galleria mellonella) studied. These results demonstrated that coffee infusion is a possible alternative for kombucha production since the physicochemical changes prove the metabolic activity of Symbiotic Culture of Bacteria and Yeast.


Assuntos
Bebidas , Café , Café/metabolismo , Fermentação , Bebidas/análise , Bactérias/genética , Bactérias/metabolismo , Antioxidantes/análise , Saccharomyces cerevisiae/metabolismo
5.
Probiotics Antimicrob Proteins ; 15(2): 300-311, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34453308

RESUMO

In this work, two Peruvian beverages "Masato de Yuca," typical of the Amazonian communities made from cassava (Manihot esculenta), and "Chicha de Siete Semillas," made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


Assuntos
Limosilactobacillus fermentum , Manihot , Probióticos , Humanos , Verduras , Peru , Técnica de Amplificação ao Acaso de DNA Polimórfico , Lactobacillus , Bebidas Fermentadas , Fermentação
6.
Curr Res Food Sci ; 5: 360-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198995

RESUMO

Kombucha is a millennial beverage with great potential due to its functional claims. The infusion of black or green tea leaves (Camellia sinensis) and sugar is fermented by a symbiotic culture of bacteria and yeasts (SCOBY) resulting in an acidic and lightly carbonated beverage, kombucha. It offers in its composition phytoconstituents with relevant nutritional valor, among these, flavonoids that stand out for their antioxidant, anti-inflammatory characteristics and their association with decreasing the risks of various diseases. Previous studies in vivo and in vitro have shown promising results using kombucha as a functional beverage. Those studies promote the search for alternative raw materials for the production of kombucha, in addition, new ingredients interfere in the production, constitution, and nutritional potentialities of the beverage, as well as its functionality in the face of diseases. Thus, this graphical review compiles relevant scientific data on kombucha involving its origin, production, nutritional potential, and possible health benefits associated with its consumption.

7.
Braz J Microbiol ; 53(2): 921-933, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35094300

RESUMO

The objective of this work was to determine in vitro probiotic activity traits of 11 lactic acid bacteria (LAB) strains isolated from pulque obtained from three different locations in the Mexican states of Oaxaca and Puebla using the probiotic strain Lactobacillus acidophilus NCFM as a positive control, and to detect their production of antimicrobial peptides, including bacteriocins and peptidoglycan hydrolases (PGH). The LAB isolates were identified by sequencing of their 16S rRNA as belonging to four different genera of the Lactobacillaceae family: Lactiplantibacillus, Levilactobacillus, Lacticaseibacillus and Liquorilactobacillus, corresponding to the species plantarum, brevis, paracasei and ghanensis, respectively. Most of the strains showed resistance to high acidity (pH 2) and bile salts (0.5%), with survival rates up to 87 and 92%, respectively. In addition, most of the strains presented good antimicrobial activity against the foodborne pathogens Listeria monocytogenes, ECEC and Salmonella Typhi. The strain Liquorilactobacillus ghanensis RVG6, newly reported in pulque, presented an outstanding overall performance on the probiotic activity tests. In terms of their probiotic activity traits assessed in this work, the strains compared positively with the control L. acidophilus NCFM, which is a very-well documented probiotic strain. For the antimicrobial peptide studies, four strains presented bacteriocin-like mediated antibiosis and six had significant PGH activity, with two strains presenting outstanding overall antimicrobial peptide production: Lacticaseibacillus paracasei RVG3 and Levilactobacillus brevis UTMB2. The probiotic performance of the isolates was mainly dependent on strain specificity. The results obtained in this work can foster the revalorization of pulque as a functional natural product.


Assuntos
Bacteriocinas , Lactobacillales , Levilactobacillus brevis , Probióticos , Peptídeos Antimicrobianos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bebidas Fermentadas , Lactobacillaceae/genética , Lactobacillus acidophilus/genética , Levilactobacillus brevis/genética , RNA Ribossômico 16S/genética
8.
J Food Sci ; 87(2): 503-527, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35029317

RESUMO

Kombucha has been gaining prominence around the world and becoming popular due to its good health benefits. This beverage is historically obtained by the tea fermentation of Camellia sinensis and by a biofilm of cellulose containing the symbiotic culture of bacteria and yeast (SCOBY). The other substrates added to the C. sinensis tea have also been reported to help kombucha production. The type as well as the amount of sugar substrate, which is the origin of SCOBY, in addition to time and temperature of fermentation influence the content of organic acids, vitamins, total phenolics, and alcoholic content of kombucha. The route involved in the metabolite biotransformation identified in kombucha so far and the microorganisms involved in the process need to be further studied. Some nutritional properties and benefits related to the beverage have already been reported. Antioxidant and antimicrobial activities and antidiabetic and anticarcinogenic effects are some of the beneficial effects attributed to kombucha. Nevertheless, scientific literature needs clinical studies to evaluate these benefits in human beings. The toxic effects associated with the consumption of kombucha are still unclear, but due to the possibility of adverse reactions occurring, its consumption is contraindicated in infants and pregnant women, children under 4-years-old, patients with kidney failure, and patients with HIV. The regulations in place for kombucha address a number of criteria, mainly for the pH and alcohol content, in order to guarantee the quality and safety of the beverage as well as to ensure transparency of information for consumers.


Assuntos
Camellia sinensis , Chá , Bebidas/análise , Criança , Pré-Escolar , Feminino , Fermentação , Humanos , Gravidez , Leveduras
9.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615250

RESUMO

Consumers increasingly prefer and seek functional beverages, which, given their characteristics, provide important bioactive compounds that help prevent and treat chronic diseases. Mead is a traditional fermented alcoholic beverage made from honey solution. The aging process of mead with oak chips is innovative and bestows functional characteristics to this beverage. Thus, in this study, we sought to develop and characterize a novel functional beverage by combining the health benefits of honey with the traditional aging process of alcoholic beverages in wood. Phenolic compounds, flavonoids, and antioxidant capacity were analyzed in mead using oak chips at different toasting levels and aged for 360 days. LC-ESI-QTOF-MS/MS was used to analyze the chemical profile of different meads. Over time, the aging process with oak chips showed a higher total phenolic and flavonoid content and antioxidant capacity. Eighteen compounds belonging to the classes of organic acids, phenolic acids, flavonoids, and tannins were identified in meads after 360 days. Our findings revealed that the addition of oak chips during aging contributed to p-coumaric, ellagic, abscisic, and chlorogenic acids, and naringenin, vanillin, and tiliroside significantly impacted the functional quality of mead.


Assuntos
Quercus , Vinho , Quercus/química , Espectrometria de Massas em Tandem , Antioxidantes/análise , Fenóis/química , Flavonoides/análise , Madeira/química , Vinho/análise
10.
Front Microbiol ; 10: 531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967846

RESUMO

Palm wine is obtained by fermentation of palm tree sap. In the Pacific coast of Mexico, palm wine is called Tuba and it is consumed as a traditional fermented beverage. Tuba has empirical applications such as an auxiliary in gastrointestinal diseases and a good source of nutrients. In the present study, a next-generation sequencing of the V3-V4 regions of the 16S rRNA gene was employed to analyze bacterial diversity and population dynamics during the fermentation process of Tuba, both in laboratory controlled conditions and in commercial samples from local vendors. Taxonomic identification showed that Fructobacillus was the main genus in all the samples, following by Leuconostoc, Gluconacetobacter, Sphingomonas, and Vibrio. Alpha diversity analysis demonstrated variability between all the samples. Beta diversity clustered the bacterial population according to the collection origin of the sample. Metabolic functional profile inference showed that the members of the bacterial communities may present the vitamin, antibiotic and antioxidant biosynthesis genes. Additionally, we further investigated the correlation between the predominant genera and some composition parameters of this beverage. This study provides the basis of the bacterial community composition and functionality of the fermented beverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA