Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 2): 134777, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153669

RESUMO

Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.


Assuntos
Ferroptose , Glioblastoma , Ferro , Receptores da Transferrina , Humanos , Receptores da Transferrina/metabolismo , Ferro/metabolismo , Ferroptose/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antígenos CD/metabolismo , Antígenos CD/genética , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia
2.
Mitochondrion ; 78: 101937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004262

RESUMO

Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.


Assuntos
Deferiprona , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Córtex Renal , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Córtex Renal/metabolismo , Córtex Renal/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Quelantes de Ferro/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Camundongos
3.
Curr Res Toxicol ; 7: 100181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021403

RESUMO

Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.

4.
J Exp Bot ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989813

RESUMO

In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.

5.
Free Radic Biol Med ; 222: 397-402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944214

RESUMO

Phenol red (PR) is a commonly used compound in culture media as a pH indicator. However, it is unknown whether this compound can interfere with the pharmacological induction of ferroptosis. Here, using high-content live-cell imaging death analysis, we determined that the presence of PR in the culture medium preconditioned normal and tumor cells to ferroptosis induced by system xc- inhibition mediated by imidazole ketone erastin (IKE) or GPX4 blockade in response to RSL-3, but had no significant effects against treatment with the endoperoxide FINO2. Mechanistically, we revealed that PR decreases the levels of the antiferroptotic genes Slc7a11, Slc3a2, and Gpx4, while promoting the overexpression de Acls4, a key inducer of ferroptosis. Additionally, through superresolution analysis, we determined that the presence of PR mislocalizes the system xc- from the plasma membrane. Thus, our results show that the presence of PR in the culture medium can be a problematic artifact for the accurate interpretation of cell sensitivity to IKE or RSL-3-mediated ferroptosis induction.


Assuntos
Ferroptose , Fenolsulfonaftaleína , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fenolsulfonaftaleína/metabolismo , Piperazinas/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Artefatos , Imidazóis/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Animais , Carbolinas
6.
Clin Transl Oncol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926257

RESUMO

Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.

7.
Clinics (Sao Paulo) ; 79: 100372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733688

RESUMO

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.


Assuntos
Epilepsia , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Neurônios , Estresse Oxidativo , Ratos Wistar , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Ferroptose/fisiologia , Ferroptose/efeitos dos fármacos , Neurônios/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Masculino , Hipocampo/metabolismo , Apoptose/fisiologia , Ratos , Progressão da Doença , Modelos Animais de Doenças
8.
Chin J Integr Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652227

RESUMO

OBJECTIVE: To investigate the mechanism of induction of ferroptosis by brazilin in breast cancer cells. METHODS: Breast cancer 4T1 cells were divided into 6 groups: control, brazilin 1/2 half maximal inhibitory concentration (IC50), IC50, 2×IC50, erastin (10 µg/mL) and capecitabine (10 µg/mL) groups. The effect of brazilin on the proliferation of 4T1 cells was detected by cell counting kit-8 assay, and the treatment dose of brazilin was screened. The effect of brazilin on the mitochondrial morphology of 4T1 cells, and the mitochondrial damage was evaluated under electron microscopy. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase 4 (GPX4) were estimated using various detection kits. The invasion and migration abilities of 4T1 cells were detected by scratch assay and transwell assay. The expressions levels of tumor protein p53, solute carrier family 7 member 11 (SLC7A11), GPX4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) proteins were quantified by Western blot assay. RESULTS: Compared to the control group, the 10 (1/2 IC50), 20 (IC50) and 40 (2×IC50) µg/mL brazilin, erastin, and capecitabine groups showed a significant decrease in the cell survival rate, invasion and migration abilities, GSH, SLC7A11 and GPX4 protein expression levels, and mitochondrial volume and ridge (P<0.05), and a significant increase in the mitochondria membrane density, Fe2+, ROS and MDA levels, and p53 and ACSL4 protein expression levels (P<0.05). CONCLUSIONS: Brazilin actuated ferroptosis in breast cancer cells, and the underlying mechanism is mainly associated with the p53/SLC7A11/GPX4 signaling pathway.

9.
Braz. j. med. biol. res ; 57: e13218, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1534063

RESUMO

High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.

10.
Braz. j. med. biol. res ; 57: e13961, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564160

RESUMO

Glioblastomas are known for their poor clinical prognosis, with recurrent tumors often exhibiting greater invasiveness and faster growth rates compared to primary tumors. To understand the intratumoral changes driving this phenomenon, we employed single-cell sequencing to analyze the differences between two pairs of primary and recurrent glioblastomas. Our findings revealed an upregulation of ferroptosis in endothelial cells within recurrent tumors, identified by the significant overexpression of the NOX4 gene. Further analysis indicated that knocking down NOX4 in endothelial cells reduced the activity of the ferroptosis pathway. Utilizing conditioned media from endothelial cells with lower ferroptosis activity, we observed a decrease in the growth rate of glioblastoma cells. These results highlighted the complex role of ferroptosis within tumors and suggested that targeting ferroptosis in the treatment of glioblastomas requires careful consideration of its effects on endothelial cells, as it may otherwise produce counterproductive outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA