Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Pediatr ; 275: 114241, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151604

RESUMO

OBJECTIVE: To determine the association between indoor air pollution and respiratory morbidities in children with bronchopulmonary dysplasia (BPD) recruited from the multicenter BPD Collaborative. STUDY DESIGN: A cross-sectional study was performed among participants <3 years old in the BPD Collaborative Outpatient Registry. Indoor air pollution was defined as any reported exposure to tobacco or marijuana smoke, electronic cigarette emissions, gas stoves, and/or wood stoves. Clinical data included acute care use and chronic respiratory symptoms in the past 4 weeks. RESULTS: A total of 1011 participants born at a mean gestational age of 26.4 ± 2.2 weeks were included. Most (66.6%) had severe BPD. More than 40% of participants were exposed to ≥1 source of indoor air pollution. The odds of reporting an emergency department visit (OR, 1.7; 95% CI, 1.18-2.45), antibiotic use (OR, 1.9; 95% CI, 1.12-3.21), or a systemic steroid course (OR, 2.18; 95% CI, 1.24-3.84) were significantly higher in participants reporting exposure to secondhand smoke (SHS) compared with those without SHS exposure. Participants reporting exposure to air pollution (not including SHS) also had a significantly greater odds (OR, 1.48; 95% CI, 1.08-2.03) of antibiotic use as well. Indoor air pollution exposure (including SHS) was not associated with chronic respiratory symptoms or rescue medication use. CONCLUSIONS: Exposure to indoor air pollution, especially SHS, was associated with acute respiratory morbidities, including emergency department visits, antibiotics for respiratory illnesses, and systemic steroid use.

2.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493867

RESUMO

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Incêndios Florestais , Humanos , Brasil/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
3.
Sci Total Environ ; 924: 171356, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447729

RESUMO

Recent years have seen a rise in wildfire and extreme weather activity across the globe, which is projected to keep increasing with climate-induced conditions. Air pollution, especially fine particulate matter (PM2.5) concentration, is heavily affected by PM2.5 emissions from wildfire activity. Paraguay has been historically suffering from fires, with an average of 2.3 million hectares burnt per year during the 2003-2021 period. Annual PM2.5 concentration in Paraguay is 13.2 µg/m3, more than double the recommended by the WHO. We estimate that, historically, almost 40 % of fine air particulates can be attributed to fires. Using a random forest algorithm, we estimate future fire activity and fire related PM2.5 under different climate change scenarios. With global warming, we calculate that fire activity could increase by up to 120 % by 2100. Annual fire smoke PM2.5 from fires is expected to increase by 7.7 µg/m3 by 2100. Under these conditions, Paraguay is expected to suffer an increase in 3500 deaths per year attributable to fire smoke PM2.5 by 2100. We estimate the economic cost of fire smoke-related mortality by 2100 at US $ 5600 million, equivalent to 2.6 % of Paraguay's GDP, excluding other health- and productivity-related impacts on society.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Poluentes Atmosféricos/análise , Mudança Climática , Paraguai , Material Particulado/análise
4.
Environ Sci Pollut Res Int ; 31(2): 3207-3221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087152

RESUMO

Rapidly urbanizing cities in Latin America experience high levels of air pollution which are known risk factors for population health. However, the estimates of long-term exposure to air pollution are scarce in the region. We developed intraurban land use regression (LUR) models to map long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in the five largest cities in Colombia. We conducted air pollution measurement campaigns using gravimetric PM2.5 and passive NO2 sensors for 2 weeks during both the dry and rainy seasons in 2021 in the cities of Barranquilla, Bucaramanga, Bogotá, Cali, and Medellín, and combined these data with geospatial and meteorological variables. Annual models were developed using multivariable spatial regression models. The city annual PM2.5 mean concentrations measured ranged between 12.32 and 15.99 µg/m3 while NO2 concentrations ranged between 24.92 and 49.15 µg/m3. The PM2.5 annual models explained 82% of the variance (R2) in Medellín, 77% in Bucaramanga, 73% in Barranquilla, 70% in Cali, and 44% in Bogotá. The NO2 models explained 65% of the variance in Bucaramanga, 57% in Medellín, 44% in Cali, 40% in Bogotá, and 30% in Barranquilla. Most of the predictor variables included in the models were a combination of specific land use characteristics and roadway variables. Cross-validation suggests that PM2.5 outperformed NO2 models. The developed models can be used as exposure estimate in epidemiological studies, as input in hybrid models to improve personal exposure assessment, and for policy evaluation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Cidades , Dióxido de Nitrogênio/análise , Colômbia , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise , Exposição Ambiental
5.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371506

RESUMO

This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aß42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aß42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.


Assuntos
Poluição do Ar , Doença de Alzheimer , Apolipoproteína E4 , Material Particulado , Suicídio , Humanos , Poluição do Ar/efeitos adversos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Encéfalo/patologia , Cidades/epidemiologia , Interação Gene-Ambiente , Heterozigoto , México/epidemiologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Material Particulado/efeitos adversos , Suicídio/estatística & dados numéricos
6.
Environ Int ; 174: 107906, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030285

RESUMO

BACKGROUND: Wildfire imposes a high mortality burden on Brazil. However, there is a limited assessment of the health economic losses attributable to wildfire-related fine particulate matter (PM2.5). METHODS: We collected daily time-series data on all-cause, cardiovascular, and respiratory mortality from 510 immediate regions in Brazil during 2000-2016. The chemical transport model GEOS-Chem driven with Global Fire Emissions Database (GFED), in combination with ground monitored data and machine learning was used to estimate wildfire-related PM2.5 data at a resolution of 0.25°â€ˆ× 0.25°. A time-series design was applied in each immediate region to assess the association between economic losses due to mortality and wildfire-related PM2.5 and the estimates were pooled at the national level using a random-effect meta-analysis. We used a meta-regression model to explore the modification effect of GDP and its sectors (agriculture, industry, and service) on economic losses. RESULTS: During 2000-2016, a total of US$81.08 billion economic losses (US$5.07 billion per year) due to mortality were attributable to wildfire-related PM2.5 in Brazil, accounting for 0.68% of economic losses and equivalent to approximately 0.14% of Brazil's GDP. The attributable fraction (AF) of economic losses due to wildfire-related PM2.5 was positively associated with the proportion of GDP from agriculture, while negatively associated with the proportion of GDP from service. CONCLUSION: Substantial economic losses due to mortality were associated with wildfires, which could be influenced by the agriculture and services share of GDP per capita. Our estimates of the economic losses of mortality could be used to determine optimal levels of investment and resources to mitigate the adverse health impacts of wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Incêndios Florestais , Brasil/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Aprendizado de Máquina , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Fumaça , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
7.
Environ Sci Pollut Res Int ; 30(1): 1908-1918, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925459

RESUMO

Obesity and exposure to fine particulate matter (PM2.5) are risk factors for insulin resistance, to which physical exercise is the most powerful non-pharmacological strategy. However, public concern over whether exercise could be protective in a polluted environment exists. Therefore, evaluating the possible benefits of exercise in polluted conditions in different contexts (age, gender, and cardiometabolic health) is imperative. In this sense, muscle plays a major role in maintaining glucose homeostasis, and its oxidative status is closely affected during exercise. This study tested whether moderate aerobic training could alleviate the metabolic and oxidative impairment in the gastrocnemius induced by the combination of a high-fat diet (HFD) and PM2.5 exposure. Female mice (B6129SF2/J) received HFD (58.3% of fat) or standard diet, intranasal instillation of 20 µg residual oil fly ash (ROFA: inorganic portion of PM2.5), or saline seven times per week for 19 weeks. In the 13th week, animals were submitted to moderate training or remained sedentary. Trained animals followed a progressive protocol for 6 weeks, ending at swimming with 5% body weight of workload for 60 min, while sedentary animals remained in shallow water. Aerobic moderate training attenuated weight gain and glucose intolerance and prevented muscle and pancreatic mass loss induced by a HFD plus ROFA exposure. Interestingly, a HFD combined with ROFA enhanced the catalase antioxidant activity, regardless of physical exercise. Therefore, our study highlights that, even in polluted conditions, moderate training is the most powerful non-pharmacological treatment for obesity and insulin resistance.


Assuntos
Poluição do Ar , Intolerância à Glucose , Resistência à Insulina , Camundongos , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade , Antioxidantes , Material Particulado , Camundongos Endogâmicos C57BL
8.
Environ Int ; 171: 107688, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512916

RESUMO

Accurate estimates of the causal effect of air pollution on health outcomes, are critical when calculating attributable disease burdens. Brazil has a large population exposed to fast-growing emissions of air pollutants, however no national level studies have been conducted to examine the causal effect of PM2.5 exposure on health outcomes. This study proposes a novel approach, to accurately estimate the causal relationship between daily PM2.5 exposure and hospitalisations, across 1,814 Brazilian cities during 2000-2015. A variant of the difference-in-differences (DID) approach was applied under a counterfactual framework. Daily time series data were divided into panels. Seasonality and long-term trend were controlled using indicators for the panel. Variables which do not change within a short-period were controlled using a dummy variable for the day. Controls for variables which vary day by day, were included in the model. We found the proposed model exhibited competitive power performance in detecting causal associations between short-term PM2.5 exposure and hospitalisations in Brazil. A 10 µg/m3 increase in PM2.5 concentrations over four days (lag 0-3) was associated with a 1.06 % (95 % CI: 0.94 to 1.17) increase in all-cause hospitalisations and accounted for 1.26 % (95 % CI: 1.12-1.39) of total hospitalisations. Larger effects were found for children aged 0-4 years and the elderly aged 80+ years, suggesting policies should be developed to minimise the exposure of these age groups.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Criança , Humanos , Brasil/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Fatores de Tempo , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Hospitalização
9.
São Paulo med. j ; 141(4): e2022210, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1432443

RESUMO

ABSTRACT BACKGROUND: Exposure to air pollutants and illness by severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection can cause serious pulmonary impairment. OBJECTIVE: To identify a possible association between exposure to air pollutants and hospitalizations due to SARS-Cov-2. DESIGN AND SETTING: Ecological time-series study carried out in Taubaté, Tremembé, and Pindamonhangaba in 2020 and 2021. METHODS: Study with Sars-Cov-2 hospitalizations with information on hospitalization date, sex and age of the subjects, duration of hospitalization, type of discharge, and costs of these hospitalizations. Statistical analysis was performed through a negative binomial regression, with data on pollutant concentrations, temperature, air relative humidity, and hospitalization date. Coefficients obtained by the analysis were transformed into relative risk for hospitalization, which estimated hospitalizations excess according to an increase in pollutant concentrations. RESULTS: There were 1,300 hospitalizations and 368 deaths, with a predominance of men (61.7%). These data represent an incidence rate of 250.4 per 100,000 inhabitants and 28.4% hospital lethality. Significant exposure (P value < 0.05) occurred seven days before hospital admission (lag 7) for nitrogen dioxide (NO2) (relative risk, RR = 1.0124) and two days before hospital admission for PM2.5 (RR = 1.0216). A 10 μg/m3 in NO2 concentration would decrease by 320 hospitalizations and ¼ US $ 240,000 in costs; a 5 μg/m3 in PM2.5 concentration would decrease by 278 hospitalizations and ¼ US $ 190,000 in costs. CONCLUSION: An association between exposure to air pollutants and hospital admission due to Sars-Cov-2 was observed with excess hospitalization and costs for the Brazilian public health system.

10.
Rev. saúde pública (Online) ; 57: 67, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1515530

RESUMO

ABSTRACT OBJECTIVE This study aims to assess covid-19 morbidity, mortality, and severity from 2020 to 2021 in five Brazilian Amazon states with the highest records of wildfires. METHODS A distributed lag non-linear model was applied to estimate the potential exposure risk association with particulate matter smaller than 2.5-µm in diameter (PM2.5). Daily mean temperature, relative humidity, percentual of community mobility, number of hospital beds, days of the week, and holidays were considered in the final models for controlling the confounding factors. RESULTS The states of Para, Mato Grosso, and Amazonas have reported the highest values of overall cases, deaths, and severe cases of covid-19. The worrying growth in the percentual rates in 2020/2021 for the incidence, severity, and mortality were highlighted in Rondônia and Mato Grosso. The growth in 2020/2021 in the estimations of PM2.5 concentrations was higher in Mato Grosso, with an increase of 24.4%, followed by Rondônia (14.9%). CONCLUSION This study establishes an association between wildfire-generated PM2.5 and increasing covid-19 incidence, mortality, and severity within the studied area. The findings showed that the risk of covid-19 morbidity and mortality is nearly two times higher among individuals exposed to high concentrations of PM2.5. The attributable fraction to PM2.5 in the studied area represents an important role in the risk associated with covid-19 in the Brazilian Amazon region.


Assuntos
Incêndios Florestais , Material Particulado , COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA