Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1184973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229494

RESUMO

The limited delivery of cargoes at the cellular level is a significant challenge for therapeutic strategies due to the presence of numerous biological barriers. By immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite nanoparticles, a new family of cell-penetrating nanobioconjugates was developed in a previous study. We propose in this study to extend this strategy to silica nanoparticles (SNPs) and silanized fullerenol (F) as nanostructured supports for conjugating these potent cell-penetrating agents. The same molecule conjugated to distinct nanomaterials may interact with subcellular compartments differently. On the obtained nanobioconjugates (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F), physicochemical characterization was performed to evaluate their properties and confirm the conjugation of these translocating agents on the nanomaterials. The biocompatibility, toxicity, and internalization capacity of nanobioconjugates in Vero cells and THP-1 cells were evaluated in vitro. Nanobioconjugates had a high internalization capacity in these cells without affecting their viability, according to the findings. In addition, the nanobioconjugates exhibited negligible hemolytic activity and a low tendency to induce platelet aggregation. In addition, the nanobioconjugates exhibited distinct intracellular trafficking and endosomal escape behavior in these cell lines, indicating their potential for addressing the challenges of cytoplasmic drug delivery and the development of therapeutics for the treatment of lysosomal storage diseases. This study presents an innovative strategy for conjugating cell-penetrating agents using silica nanoparticles and silanized fullerenol as nanostructured supports, which has the potential to enhance the efficacy of cellular drug delivery.

2.
Biomed Pharmacother ; 134: 111120, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341671

RESUMO

Visceral leishmaniasis (VL) is a systemic parasitic disease that leads to high rates of morbidity and mortality in humans worldwide. There is a great need to develop new drugs and novel strategies to make chemotherapy for this disease more efficacious and well tolerated. Recent reports on the immunomodulatory effects and the low toxicity of the spherical carbon nanostructure fullerol led us to investigate in vitro and in vivo antileishmanial activity in free and encapsulated forms in liposomes. When assayed against intramacrophagic Leishmania amastigotes, fullerol showed a dose-dependent reduction of the infection index with IC50 of 0.042 mg/mL. When given daily by i.p. route for 20 days (0.05 mg/kg/d) in a murine model of acute VL, fullerol promoted significant reduction in the liver parasite load. To improve the delivery of fullerol to the infection sites, liposomal formulations were prepared by the dehydration-rehydration method. When evaluated in the acute VL model, liposomal fullerol (Lip-Ful) formulations given i.p. at 0.05 and 0.2 mg/kg with 4-days intervals were more effective than the free form, with significant parasite reductions in both liver and spleen. Lip-Ful at 0.2 mg/kg promoted complete parasite elimination in the liver. The antileishmanial activity of Lip-Ful was further confirmed in a chronic model of VL. Lip-Ful was also found to induce secretion of pro-inflammatory TNF-α, IFN-γ and IL-1ß cytokines. In conclusion, this work reports for the first time the antileishmanial activity of fullerol and introduces an innovative approach for treatment of VL based on the association of this nanostructure with liposomes.


Assuntos
Fulerenos/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Lipídeos/química , Fígado/parasitologia , Macrófagos Peritoneais/parasitologia , Tripanossomicidas/farmacologia , Animais , Citocinas/sangue , Modelos Animais de Doenças , Composição de Medicamentos , Feminino , Fulerenos/química , Mediadores da Inflamação/sangue , Leishmania infantum/crescimento & desenvolvimento , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Visceral/sangue , Leishmaniose Visceral/parasitologia , Lipossomos , Fígado/metabolismo , Mesocricetus , Camundongos Endogâmicos BALB C , Nanopartículas , Carga Parasitária , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA