Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Naturwissenschaften ; 111(5): 44, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136793

RESUMO

Galls are plant neoformations induced by specialized parasites. Since gall inducers rely on reactive plant sites for gall development, variations in abiotic factors that affect plant phenology are expected to impact the life cycle of gall inducers. To test the hypothesis that different light conditions affect both host plant and gall inducer life cycles, we studied the system Eugenia uniflora (Myrtaceae) - Clinodiplosis profusa (Cecidomyiidae), comparing plants occurring in sunny and shaded environments. We mapped phenological differences among individuals of E. uniflora occurring in the two environments and related them to the influence of luminosity on the life cycle of the gall inducer. Shade plants showed lower intensity of leaf sprouting throughout the year compared to sun-exposed plants, especially during the rainy season. Young and mature galls are synchronized with the peak of leaf sprouting at the beginning of the rainy season, lasting longer in sun-exposed plants - approximately two months longer compared to shade plants. The greater light intensity positively impacts the formation and growth of leaves and galls, with an extended period available for their induction and growth. Thus, light is an important factor for the development of gallers, considering that variations in luminosity influenced not only the phenology of the host plant, but also determined the life cycle of gall inducers. Furthermore, changes in plant-environment interactions are expected to affect the life cycle and richness of other host plant-gall inducer systems.


Assuntos
Eugenia , Luz Solar , Eugenia/fisiologia , Animais , Tumores de Planta/parasitologia , Luz , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Estações do Ano , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia
2.
Exp Appl Acarol ; 93(2): 397-407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967735

RESUMO

Phytoseiid mites have been frequently found in association with the lychee erinose mite, Aceria litchii, on lychee plants in Brazil, suggesting that they are promising candidates as biological control agents against this pest. Here, we investigated whether phytoseiids would suppress A. litchii infestation, i.e. formation of erinea, on lychee plants under field conditions. Four groups of A. litchii-infested plants were randomly distributed in the field, with each group receiving either Phytoseius intermedius, Amblyseius herbicolus, A. herbicolus supplemented with cattail pollen or no predator. During a three-month period, the released predators, along with others present in the surrounding environment, were allowed to freely walk among all plants. In each plant, we evaluated the occurrence of phytoseiid species, their abundance, and the dynamics of erinea formation. A total of 2,097 mites, including 13 other phytoseiid species were identified. The most abundant species were Iphiseiodes zuluagai and Euseius ho, rather than the two predator species that were released. A. herbicolus and P. intermedius failed to establish populations in the majority of the plants, regardless of the presence of pollen, suggesting their ineffectiveness in controlling A. litchii infestations. While there was a significant difference in the proportion of erinea among the four treatments, this contrast was not associated with the presence of phytoseiids, suggesting that other factors might have hindered erinea formation on lychee plants. The reasons behind this outcome are further explored and discussed.


Assuntos
Ácaros , Controle Biológico de Vetores , Animais , Ácaros/fisiologia , Brasil , Litchi , Comportamento Predatório
3.
Front Plant Sci ; 14: 1237966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126017

RESUMO

Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.

4.
Plant Biol (Stuttg) ; 25(6): 965-972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37432095

RESUMO

Some chewing larvae are capable of inducing galls in the host vascular cylinder, e.g. Dasineura sp. (Cecidomyiidae) on Peumus boldus stems. Due to the medicinal and economic importance of P. boldus, the anatomical and functional implications of establishment of Dasineura sp. on P. boldus stems were investigated. We asked if establishment of Dasineura sp. in P. boldus stems induces abnormalities at the cellular and organizational level of the vascular system that increase during gall development in favour of the hydric status of the gall. Anatomical alterations induced in the stems during gall development were determined. Cytohistometric analyses in mature galls were compared to non-galled stems, and water potential and leaf area of non-galled stems were compared with galled stems. Dasineura sp. establishes in the vascular cambium, leading to delignification and rupture of xylem cells, inhibiting formation of phloem and perivascular sclerenchyma. Gall diameter increases together with larval feeding activity, producing a large larval chamber and numerous layers of nutritive tissue, vascular parenchyma, and sclerenchyma. These anatomical alterations do not affect the leaf area of galled stems but favour increased water flow towards these stems. The anatomical alterations induced by Dasineura sp. in P. boldus stems guarantee water and nutrient supply to the gall and larva. After the inducer exits stems, some host branches no longer have vascular connections with the plant body.


Assuntos
Peumus , Animais , Tumores de Planta , Larva , Folhas de Planta , Interações Hospedeiro-Parasita
5.
Plant Dis ; 107(5): 1343-1354, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36350732

RESUMO

Guaraná is indigenous to the Brazilian Amazon where it has cultural and agroeconomic significance. However, its cultivation is constrained by a disease termed oversprouting of guaraná caused by Fusarium decemcellulare, with yield losses reaching as high as 100%. The disease can affect different parts of the plant, causing floral hypertrophy and hyperplasia, stem galls, and oversprouting of vegetative buds. To date, no study has been conducted characterizing the genetic diversity and population structure of this pathogen. Here, we report genetic diversity and genetic structure among 224 isolates from eight guaraná production areas of Amazonas State, Brazil, that were genotyped using a set of 10 inter-simple-sequence repeat (ISSR) markers. Despite moderate gene diversity (Hexp = 0.21 to 0.32), genotypic diversity was at or near maximum (223 multilocus genotypes among 224 isolates). Population genetic analysis of the 10 ISSR marker fragments with STRUCTURE software identified two populations designated C1 and C2 within the F. decemcellulare collection from the eight sites. Likewise, UPGMA hierarchical clustering and discriminant analysis of principal components of the strains from guaraná resolved these same two groups. Analysis of molecular variance demonstrated that 71% of genetic diversity occurred within the C1 and C2 populations. A pairwise comparison of sampling sites for both genetic populations revealed that 59 of 66 were differentiated from one another (P < 0.05), and high and significant gene flow was detected only between sampling sites assigned to the same genetic population. The presence of MAT1-1 and MAT1-2 strains, in conjunction with the high genotypic diversity and no significant linkage disequilibrium, suggests that each population of F. decemcellulare might be undergoing sexual reproduction. Isolation by distance was not observed (R2 = 0.02885, P > 0.05), which suggests that human-mediated movement of seedlings may have played a role in shaping the F. decemcellulare genetic structure in Amazonas State, Brazil.


Assuntos
Paullinia , Doenças das Plantas , Humanos , Brasil , Variação Genética , Genética Populacional
6.
Plant Physiol Biochem ; 195: 25-36, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586397

RESUMO

Red galls have high levels of anthocyanins which perform different physiological functions, such as antioxidants and protection against UVB radiation. High levels of anthocyanins and other polyphenols have been associated with low photosynthetic pigment content. In environments with high levels of UVB radiation, it would thus be expected that red galls would have high anthocyanin and polyphenol levels and low photosynthetic pigment contents, enabling the gall with high antioxidant capacity compared to its host organ. The red galls induced by Eriophyes tiliae, and their host environment of Tilia platyphyllos leaves in the Mediterranean climate of Chile, were investigated in relation to their anatomy, histochemistry, pigment, sugar, protein, and polyphenol contents, and antioxidant capacity. The anthocyanin, sugars, and polyphenol contents and the antioxidant capacity were increased in galls. Photosynthetic pigment and protein contents were higher in non-galled leaves. The high levels of anthocyanin and total polyphenols increase the galls' antioxidant capacity in the high UV radiation environment of a Mediterranean climate. The establishment of E. tiliae induced redifferentiation of nutritive tissue, rich in sugars, proteins, and lipids, and an inner epidermis with trichomes and long emergences. E. tiliae galls' structural and metabolic features are probably enhanced towards mite nutrition and protection. The current results shed light on the role of anthocyanin in the antioxidant protection of plant galls in environments with high UV irradiance.


Assuntos
Antocianinas , Antioxidantes , Antioxidantes/metabolismo , Antocianinas/metabolismo , Tilia/metabolismo , Polifenóis/metabolismo , Folhas de Planta/metabolismo , Tumores de Planta , Estresse Oxidativo , Açúcares/metabolismo
7.
Ciênc. rural (Online) ; 53(11): e20220112, 2023. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1430209

RESUMO

The grapevine phylloxera Daktulosphaira vitifoliae (Fitch, 1856) is the main insect pest of viticulture globally. Infestations can occur in the aerial part of the plant (gallicolae form) and roots (radicicolae form). In this study, the effect of insecticides on the populations suppression of the gall and root forms of phylloxera one vine was evaluated. For the gallicolous form, the thiamethoxam (Actara 250 WG®, 40g c.p./100L-1), flupyradifurone (Sivanto® Prime 200 SL, 75mL c.p./100L-1), and sulfoxaflor (Closer® SC, 40mL c.p./100L-1) were evaluated in the field, under natural infestation, using rootstock plants 'Paulsen 1103' (Vitis berlandieri x V. rupestris). For the root stage, an experiment was carried out in a greenhouse using rooted seedlings of 'Cabernet Sauvignon' (Vitis vinifera) grown in pots artificially infested with 200 phylloxera eggs per plant. After 80 days of infestation, the thiamethoxam (0.2g p.c./plant), flupyradifurone (0.8mL p.c./plant), sulfoxaflor (0.3mL/plant) and imidacloprid (Proved 200 SC, 0.7 mL/plant) were applied via drench. For the gallicolae form, an application of the flupyradifurone provided a gall reduction of 90% at 28 days after the first application (DAFA). While for thiamethoxam, 3 applications were needed at weekly intervals to maintain the same level of control. For sulfoxaflor, a second application at 14 DAFA was necessary to provide a level of control above 90%. For the root stage, the insecticides sulfoxaflor and imidacloprid showed the best results, with 96 and 89% of control over nymphs and adults, respectively. The insecticides flupiradifurone and sulfoxaflor are suitable for the chemical control of phylloxera in the vine.


A filoxera-da-videira Daktulosphaira vitifoliae (Fitch, 1856) é o principal inseto-praga da viticultura mundial. As infestações podem ocorrer na parte aérea (forma galícola) e raízes (forma radícola). Neste trabalho foi avaliado o efeito de inseticidas na supressão de populações da forma galícola e radícola da praga em videira. Para a fase galícola, os inseticidas thiamethoxam (Actara 250 WG®, 40g p.c/100L-1), flupiradifurona (Sivanto® Prime 200 SL, 75mL p.c/100L-1) e sulfoxaflor (Closer® SC, 40mL p.c/100L-1) foram avaliados a campo, sob infestação natural, utilizando plantas do porta-enxerto 'Paulsen 1103' (Vitis berlandieri x V. rupestris). Para a fase radícola foi conduzido um experimento em casa-de-vegetação a partir de mudas enraizadas de 'Cabernet Sauvignon' (Vitis vinifera) cultivadas em vasos infestados artificialmente com 200 ovos da filoxera por planta. Após 80 dias da infestação, os inseticidas thiamethoxam (0,2g p.c./planta), flupiradifurona (0,8mL p.c. /planta), sulfoxaflor (0,3mL/planta) e imidacloprido (Provado 200 SC, 0,7 mL/planta) foram aplicados via drench. Para a fase galícola, uma aplicação do inseticida flupiradifurona proporcionou uma redução de galhas de 90% aos 28 dias após a primeira aplicação (DAPA). Enquanto que para o thiamethoxam, foram necessárias três aplicações em intervalos semanais para manter o mesmo nível de controle. Para o sulfoxaflor, foi necessária uma segunda aplicação aos 14 DAPA, para proporcionar um nível de controle acima de 90%. Para a fase radícola, os inseticidas sulfoxaflor e imidacloprido apresentaram os melhores resultados, com 96 e 89% de controle sobre ninfas e adultos respectivamente. Os inseticidas flupiradifurona e sulfoxaflor são alternativas aos neonicotinoides (imidacloprido e thiametoxam) para a supressão populacional da filoxera na cultura da videira.


Assuntos
Pragas da Agricultura , Vitis/parasitologia , Hemípteros , Inseticidas
8.
Biota Neotrop. (Online, Ed. ingl.) ; 23(1): e20221428, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429919

RESUMO

Abstract A survey and characterization of entomogenous galls and their associated fauna were carried out in six remnants of Caatinga in the Northern Depressão Sertaneja, in the states of Paraíba, Rio Grande do Norte and Ceará. We identified 41 gall morphotypes in 24 plant species, belonging to 12 botanical families. Fabaceae had 29.2% (n = 12) of the total number of gall morphotypes found. Leaves (61%) and stems (25%) were the most attacked organs. Most morphotypes are glabrous (75.6%), while only 24.4% exhibit trichomes. Most galls were induced by insects of the Cecidomyiidae family. The associated fauna comprised successors, cecidophages, tenants, and parasitoids. Sucessors were found in four morphotypes of galls and included spiders and four orders of insects: Hemiptera, Coleoptera, Lepidoptera, and Hymenoptera (Formicidae). The tenants were represented by Tanaostigmoides (Tanaostigmatidae). The parasitoids, found in 18 morphotypes (43.9%), were represented by six families of Hymenoptera. We recorded the occurrence of new types of galls in 12 species of host plants. These gall records are new references for the Northern Depressão Sertaneja in the studied states.


Resumo Realizou-se um levantamento e caracterização de galhas entomógenas e sua fauna associada em seis remanescentes de Caatinga presentes na Depressão Sertaneja Setentrional nos estados da Paraíba, Rio Grande do Norte e Ceará. Identificamos 41 morfotipos de galhas em 24 espécies de plantas, pertencentes a 12 famílias botânicas. Fabaceae abrigou 29,2% (n = 12) do total de morfotipos de galhas encontrados. As folhas (61%) e os caules (25%) foram os órgãos mais atacados. A maioria dos morfotipos é glabra (75,6%), enquanto apenas 24,4% exibiram tricomas. As galhas, em sua maioria, foram induzidas por insetos da família Cecidomyiidae. A fauna associada compreendeu sucessores, fungívoros, inquilinos e parasitoides. Os primeiros foram encontrados em quatro morfotipos de galhas, estando representados por aranhas e quatro ordens de insetos: Hemiptera, Coleoptera, Lepidoptera e Hymenoptera (Formicidae). Os inquilinos foram representados por Tanaostigmoides Ashmead, 1896 (Tanaostigmatidae). Já os parasitoides, encontrados em 18 morfotipos de galhas (43,9%), foram representados por seis famílias de Hymenoptera. Registramos a ocorrência de novos tipos de galhas em 12 espécies de plantas hospedeiras. Os registros de galhas também são novas referências para a Depressão Sertaneja Setentrional nos estados estudados.

9.
Biota Neotrop. (Online, Ed. ingl.) ; 23(4): e20231568, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1527949

RESUMO

Abstract An insect gall inventory was carried out in two reserves of the Peruvian Amazon, Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, both situated in Iquitos, northeastern Peru. Four vegetation types were surveyed between December, 2021 and December, 2022: terra firme forest, white-sand wet forest, and white-sand dry forest in Allpahuayo-Mishana National Reserve, and palm swamp forest in Quistococha Regional Reserve. Overall, we found 262 gall morphotypes, distributed across 75 host species representing 66 plant genera and 30 families. Fabaceae was the plant family with the greatest number of gall morphotypes (n = 48), followed by Calophyllaceae (n = 21) and Euphorbiaceae (n = 20). The plant genera that supported the highest diversity of galls were Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14), and Iryanthera (n = 10). The plant species Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11), and Sloanea parvifructa (n = 10) exhibited the highest richness of galls. Among the host plants, C. utilis stands alone as the only species noted as both endemic to the Amazonian region and bearing a Vulnerable (VU) conservation status. The leaves were the most attacked organs (90% of all galls). Most morphotypes are glabrous (89%), green (67%), globoid (53%), and one-chambered (91%). We found galling insects belonging to the orders Diptera, Thysanoptera, Lepidoptera, and Hemiptera. The galling insects of Cecidomyiidae (Diptera) were the most common, inducing 22% of the gall morphotypes. In addition to the gallers, we also observed the presence of successors, cecidophages, and parasitoids. Among the sampled vegetation types, the terra firme forest presented the highest richness of gall morphotypes and host plant species. This is the first systematic inventory of insect galls in this part of the Peruvian Amazon.


Resumo Um inventário de galhas de insetos foi realizado em duas reservas da Amazônia peruana, Reserva Nacional Allpahuayo-Mishana e Reserva Regional Quistococha, ambas situadas em Iquitos, nordeste do Peru. Quatro tipos de vegetação foram pesquisados entre dezembro de 2021 e dezembro de 2022: floresta de terra firme, floresta úmida de areia branca e floresta seca de areia branca na Reserva Nacional Allpahuayo-Mishana, e floresta de pântano de palmeiras na Reserva Regional Quistococha. No total, encontramos 262 morfotipos de galhas, distribuídos em 75 espécies hospedeiras representando 66 gêneros de plantas e 30 famílias. Fabaceae foi a família de plantas com o maior número de morfotipos de galhas (n = 48), seguida por Calophyllaceae (n = 21) e Euphorbiaceae (n = 20). Os gêneros de plantas que apresentaram a maior diversidade de galhas foram Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14) e Iryanthera (n = 10). As espécies de plantas Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11) e Sloanea parvifructa (n = 10) apresentaram a maior riqueza de galhas. Dentre as plantas hospedeiras, C. utilis destaca-se como a única espécie listada como endêmica da região amazônica e com um status de conservação Vulnerável (VU). As folhas foram os órgãos mais atacados (90% de todas as galhas). A maioria dos morfotipos é glabra (89%), verde (67%), globoide (53%) e possui apenas uma câmara interna (91%). Encontramos insetos galhadores pertencentes às ordens Diptera, Thysanoptera, Lepidoptera e Hemiptera. Os insetos galhadores da família Cecidomyiidae (Diptera) foram os mais comuns, induzindo 22% dos morfotipos de galhas. Além dos galhadores, também observamos a presença de sucessores, cecidófagos e parasitoides. Entre os tipos de vegetação amostrados, a floresta de terra firme apresentou a maior riqueza de morfotipos de galhas e espécies de plantas hospedeiras. Este é o primeiro inventário sistemático de galhas de insetos nesta região da Amazônia peruana.

10.
J Plant Res ; 135(4): 593-608, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641669

RESUMO

Plant galls are generated by the stimuli of gall-inducing organisms on their hosts, creating gall morphotypes that vary in color, shape, size, and tissue organization. Herein, we propose to compare the structural features of gall morphotypes on the superhost Croton floribundus (Euphorbiaceae) in order to recognize gall morphospecies, i.e., galls with similar shapes but different internal structures. Non-galled leaves and galls were analyzed macroscopically, histologically, and histochemically for the detection of primary metabolites, and the results obtained were used for statistical analyses of similarity. Among the eight gall morphospecies, four are globoid, two are lenticular, one is fusiform and one is marginal leaf rolling. Stomatal differentiation and the occurrence of different types of trichomes were impaired in some gall morphospecies. Three patterns of organization of the ground system are recognized, ranging from the maintenance of mesophyll cells that differentiate into palisade and spongy cells dorsiventrally to the formation of a complex cortex with three morphofunctional layers. The marginal leaf rolling galls have the simplest anatomical structures, quite similar to those of the non-galled host leaf, while lenticular, globoid (types I to IV), and fusiform galls are anatomically more complex. Herein, we report on eight gall morphospecies occurring on C. floribundus, which are distinguished by morpho-anatomical attributes and show the disruption of the morphogenetic patterns of the host leaf toward the morphogenesis of unique gall features.


Assuntos
Fabaceae , Tumores de Planta , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA