Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081110

RESUMO

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.

2.
Liver Int ; 44(1): 6-14, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37833849

RESUMO

BACKGROUND & AIMS: Obesity and non-alcoholic fatty liver disease (NAFLD) are known risk factors for gastrointestinal (GI) cancers. However, GI carcinogenesis in lean NAFLD patients remains unclear. This systematic review and meta-analysis aims to investigate the association between lean NAFLD and GI cancer risk. METHODS: PubMed, Embase and Cochrane Library databases were systematically searched (from inception date to April 2023) for cohort studies assessing GI cancers in lean (body mass index [BMI] < 25 kg/m2 or < 23 kg/m2 in Asians) and non-lean (BMI ≥25 kg/m2 or ≥ 23 kg/m2 in Asians) NAFLD individuals. Data from eligible studies were extracted, and meta-analysis was carried out using a random effects model to obtain risk ratios (RRs) with 95% confidence intervals (CIs). Subgroup analyses, meta-regressions and sensitivity analyses were also performed. This study was registered in PROSPERO (CRD42023420902). RESULTS: Eight studies with 56,745 NAFLD individuals (11% were lean) and 704 cases of incident GI cancers were included. Lean NAFLD was associated with higher risk of hepatic (RR 1.77, 95% CI 1.15-2.73), pancreatic (RR 1.97, 95% CI 1.01-3.86) and colorectal cancers (RR 1.53, 95% CI 1.12-2.09), compared to non-lean NAFLD. No significant differences were observed for oesophagus, gastric, biliary and small intestine cancers. CONCLUSIONS: This study shows that lean NAFLD patients have an increased risk of liver, pancreatic and colorectal cancers compared to non-lean NAFLD patients, emphasizing the need to explore tailored cancer prevention strategies for this specific patient group. Further research is required to explore the mechanisms underlying the association between lean NAFLD and specific GI cancers.


Assuntos
Neoplasias Colorretais , Neoplasias Gastrointestinais , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fatores de Risco , Neoplasias Gastrointestinais/epidemiologia , Neoplasias Gastrointestinais/complicações , Neoplasias Colorretais/complicações
3.
Artigo em Inglês | MEDLINE | ID: mdl-36834334

RESUMO

The overall burden of cancer is rapidly increasing worldwide, reflecting not only population growth and aging, but also the prevalence and spread of risk factors. Gastrointestinal (GI) cancers, including stomach, liver, esophageal, pancreatic, and colorectal cancers, represent more than a quarter of all cancers. While smoking and alcohol use are the risk factors most commonly associated with cancer development, a growing consensus also includes dietary habits as relevant risk factors for GI cancers. Current evidence suggests that socioeconomic development results in several lifestyle modifications, including shifts in dietary habits from local traditional diets to less-healthy Western diets. Moreover, recent data indicate that increased production and consumption of processed foods underlies the current pandemics of obesity and related metabolic disorders, which are directly or indirectly associated with the emergence of various chronic noncommunicable conditions and GI cancers. However, environmental changes are not restricted to dietary patterns, and unhealthy behavioral features should be analyzed with a holistic view of lifestyle. In this review, we discussed the epidemiological aspects, gut dysbiosis, and cellular and molecular characteristics of GI cancers and explored the impact of unhealthy behaviors, diet, and physical activity on developing GI cancers in the context of progressive societal changes.


Assuntos
Dieta , Neoplasias Gastrointestinais , Humanos , Fatores de Risco , Obesidade , Estilo de Vida
4.
World J Clin Oncol ; 13(10): 762-778, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337313

RESUMO

Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.

6.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008366

RESUMO

Gastrointestinal (GI) cancers produce ~3.4 million related deaths worldwide, comprising 35% of all cancer-related deaths. The high mortality among GI cancers is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not adequately guide patient management, thereby new and more reliable biomarkers and therapeutic targets are still needed for these diseases. RNA-seq technology has allowed the discovery of new types of RNA transcripts including PIWI-interacting RNAs (piRNAs), which have particular characteristics that enable these molecules to act via diverse molecular mechanisms for regulating gene expression. Cumulative evidence has described the potential role of piRNAs in the development of several tumor types as a likely explanation for certain genomic abnormalities and signaling pathways' deregulations observed in cancer. In addition, these piRNAs might be also proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in malignancies. This review describes important topics about piRNAs including their molecular characteristics, biosynthesis processes, gene expression silencing mechanisms, and the manner in which these transcripts have been studied in samples and cell lines of GI cancers to elucidate their implications in these diseases. Moreover, this article discusses the potential clinical usefulness of piRNAs as biomarkers and therapeutic targets in GI cancers.

7.
World J Clin Oncol ; 11(3): 110-120, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32257842

RESUMO

Cancer constitutes the second leading cause of death globally and is considered to have been responsible for an estimated 9.6 million fatalities in 2018. Although treatments against gastrointestinal tumors have recently advanced, those interventions can only be applied to a minority of patients at the time of diagnosis. Therefore, new therapeutic options are necessary for advanced stages of the disease. Glycosylation of antitumor agents, has been found to improve pharmacokinetic parameters, reduce side effects, and expand drug half-life in comparison with the parent compounds. In addition, glycosylation of therapeutic agents has been proven to be an effective strategy for their targeting tumor tissue, thereby reducing the doses of the glycodrugs administered to patients. This review focusses on the effect of the targeting properties of glycosylated antitumor agents on gastrointestinal tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA