Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Twin Res Hum Genet ; 27(2): 85-96, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699821

RESUMO

TwinsMX registry is a national research initiative in Mexico that aims to understand the complex interplay between genetics and environment in shaping physical and mental health traits among the country's population. With a multidisciplinary approach, TwinsMX aims to advance our knowledge of the genetic and environmental mechanisms underlying ethnic variations in complex traits and diseases, including behavioral, psychometric, anthropometric, metabolic, cardiovascular and mental disorders. With information gathered from over 2800 twins, this article updates the prevalence of several complex traits; and describes the advances and novel ideas we have implemented such as magnetic resonance imaging. The future expansion of the TwinsMX registry will enhance our comprehension of the intricate interplay between genetics and environment in shaping health and disease in the Mexican population. Overall, this report describes the progress in the building of a solid database that will allow the study of complex traits in the Mexican population, valuable not only for our consortium, but also for the worldwide scientific community, by providing new insights of understudied genetically admixed populations.


Assuntos
Interação Gene-Ambiente , Sistema de Registros , Humanos , México/epidemiologia , Masculino , Feminino , Adulto , Doenças em Gêmeos/genética , Doenças em Gêmeos/epidemiologia , Pessoa de Meia-Idade , Gêmeos Monozigóticos/genética , Gêmeos Dizigóticos/genética , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia
2.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38240649

RESUMO

Amphibian skin microbiomes can play a critical role in host survival against emerging diseases by protecting their host against pathogens. While a plethora of biotic and abiotic factors have been shown to influence the taxonomic diversity of amphibian skin microbiomes it remains unclear whether functional genomic diversity varies in response to temporal and environmental factors. Here we applied a metagenomic approach to evaluate whether seasonality, distinct elevations/sites, and pathogen presence influenced the functional genomic diversity of the A. altamirani skin microbiome. We obtained a gene catalogue of 92 107 nonredundant annotated genes and a set of 50 unique metagenome assembled genomes (MAGs). Our analysis showed that genes linked to general and potential antifungal traits significantly differed across seasons and sampling locations at different elevations. Moreover, we found that the functional genomic diversity of A. altamirani skin microbiome differed between B. dendrobatidis infected and not infected axolotls only during winter, suggesting an interaction between seasonality and pathogen infection. In addition, we identified the presence of genes and biosynthetic gene clusters (BGCs) linked to potential antifungal functions such as biofilm formation, quorum sensing, secretion systems, secondary metabolite biosynthesis, and chitin degradation. Interestingly genes linked to these potential antifungal traits were mainly identified in Burkholderiales and Chitinophagales MAGs. Overall, our results identified functional traits linked to potential antifungal functions in the A. altamirani skin microbiome regardless of variation in the functional diversity across seasons, elevations/sites, and pathogen presence. Our findings suggest that potential antifungal traits found in Burkholderiales and Chitinophagales taxa could be related to the capacity of A. altamirani to survive in the presence of Bd, although further experimental analyses are required to test this hypothesis.


Assuntos
Antifúngicos , Microbiota , Animais , Bactérias/genética , Ambystoma/genética , Microbiota/genética , Metagenoma
3.
Parasit Vectors ; 16(1): 52, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732768

RESUMO

BACKGROUND: Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS: To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS: Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION: This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.


Assuntos
Infecções por Blastocystis , Blastocystis , Animais , Humanos , Blastocystis/genética , Colômbia , Variação Genética , Filogenia , DNA de Protozoário/genética , Fezes
4.
Microorganisms ; 12(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257891

RESUMO

Furunculosis, caused by Aeromonas salmonicida, poses a significant threat to both salmonid and non-salmonid fish in diverse aquatic environments. This study explores the genomic intricacies of re-emergent A. salmonicida outbreaks in Atlantic salmon (Salmo salar). Previous clinical cases have exhibited pathological characteristics, such as periorbital hemorrhages and gastrointestinal abnormalities. Genomic sequencing of three Chilean isolates (ASA04, ASA05, and CIBA_5017) and 25 previously described genomes determined the pan-genome, phylogenomics, insertion sequences, and restriction-modification systems. Unique gene families have contributed to an improved understanding of the psychrophilic and mesophilic clades, while phylogenomic analysis has been used to identify mesophilic and psychrophilic strains, thereby further differentiating between typical and atypical psychrophilic isolates. Diverse insertion sequences and restriction-modification patterns have highlighted genomic structural differences, and virulence factor predictions can emphasize exotoxin disparities, especially between psychrophilic and mesophilic strains. Thus, a novel plasmid was characterized which emphasized the role of plasmids in virulence and antibiotic resistance. The analysis of antibiotic resistance factors revealed resistance against various drug classes in Chilean strains. Overall, this study elucidates the genomic dynamics of re-emergent A. salmonicida and provides novel insights into their virulence, antibiotic resistance, and population structure.

5.
PeerJ ; 10: e14398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415865

RESUMO

Background: Genetic diversity is fundamental for the survival of species. In particular, in a climate change scenario, it is crucial that populations maintain genetic diversity so they can adapt to novel environmental conditions. Genetic diversity in wild agaves is usually high, with low genetic differentiation among populations, in part maintained by the agave pollinators such as the nectarivorous bats. In cultivated agaves, patterns of genetic diversity vary according to the intensity of use, management, and domestication stage. In Agave tequilana Weber var. azul (A. tequilana thereafter), the plant used for tequila production, clonal propagation has been strongly encouraged. These practices may lead to a reduction in genetic diversity. Methods: We studied the diversity patterns with genome-wide SNPs, using restriction site associated DNA sequencing in cultivated samples of A. tequilana from three sites of Jalisco, Mexico. For one locality, seeds were collected and germinated in a greenhouse. We compared the genomic diversity, levels of inbreeding, genetic differentiation, and connectivity among studied sites and between adults and juvenile plants. Results: Agave tequilana presented a genomic diversity of HT = 0.12. The observed heterozygosity was higher than the expected heterozygosity. Adults were more heterozygous than juveniles. This could be a consequence of heterosis or hybrid vigor. We found a shallow genetic structure (average paired FST = 0.0044). In the analysis of recent gene flow, we estimated an average migration rate among the different populations of m = 0.25. In particular, we found a population that was the primary source of gene flow and had greater genomic diversity (HE and HO ), so we propose that this population should continue to be monitored as a potential genetic reservoir. Discussion: Our results may be the consequence of more traditional management in the studied specific region of Jalisco. Also, the exchange of seeds or propagules by producers and the existence of gene flow due to occasional sexual reproduction may play an important role in maintaining diversity in A. tequilana. For populations to resist pests, to continue evolving and reduce their risk of extinction under a climate change scenario, it is necessary to maintain genetic diversity. Under this premise we encourage to continue acting in conservation programs for this species and its pollinators.


Assuntos
Agave , Agave/genética , México , Heterozigoto , Bebidas Alcoólicas , Genômica
6.
Fungal Biol ; 126(9): 547-555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36008047

RESUMO

Apples (Malus domestica) are one of the most consumed fruits globally. It is a relevant crop in Argentina and Spain, and one of the main fruits for export and industrialization in these countries. Quality control of apples, fundamentally in the postharvest stage, is critical to prevent fungal diseases. The blue mould, caused by Penicillium expansum, is responsible for great economic losses due to the deterioration of the fruit and mycotoxin production. Many studies have characterized this pathogen; however, little is known about the differences between populations from distant geographical origins. The objective of the present study was to characterize two P. expansum populations, from Argentina and Spain, through morphological, metabolomic and molecular approaches, and to evaluate the existence of differences related to their geographical source. A total of 103 isolates, 53 from Argentina and 50 from Spain were studied. Their morphological features were consistent with the species description. The secondary metabolite profiles revealed low chemical diversity. All 103 isolates shared the production of 13 compounds, namely andrastins, aurantioclavine, chaetoglobosins, communesins, expansolides, roquefortine C and patulin. Penostatins and citrinin were produced by 102 and 101 isolates, respectively. A region of the ß-tubulin gene was selected to analyse the diversity of the P. expansum isolates. No substantial differences were observed between isolates of different geographical origins through morphology, patulin accumulation, secondary metabolite profiles and phylogenetic analysis. However, the analysis of polymorphisms revealed 29 haplotypes with a relative separation between isolates of both populations; 13 haplotypes contained Argentinean isolates, while Spanish isolates were separated into 16 haplotypes. The diversity indices of Shannon (H'=2.075; H'=2.402) and Simpson (SiD = 0.850; SiD = 0.895) for isolates from Argentina and Spain, respectively, indicated that the diversity of P. expansum is greater in Spain than in Argentina. This distribution could be explained both by the existence of haplotype exchange between both countries, with the ancestral haplotypes originating in Spain, and the subsequent adaptation to the environmental conditions or apples varieties grown in each region.


Assuntos
Malus , Patulina , Penicillium , Argentina , Frutas/microbiologia , Malus/microbiologia , Patulina/análise , Penicillium/genética , Penicillium/metabolismo , Filogenia , Espanha
7.
Front Genet ; 13: 858970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923708

RESUMO

Purunã is a composite beef cattle breed, developed in Southern Brazil by crossing the Angus, Charolais, Canchim, and Caracu breeds. The goal of this study was to perform the first genetic characterization of the Purunã breed, based on both pedigree and genomic information. For this, 100 randomly selected animals were genotyped, and 11,205 animals born from 1997 to 2019 had pedigree information. The genetic analyses performed were principal component analysis, admixture, phylogenic tree, pedigree and genomic inbreeding, linkage disequilibrium (LD), effective population size (Ne), consistency of the gametic phase, runs of homozygosity (ROH), heterozygosity-enriched regions (HERs), and functional analyses of the ROH and HER regions identified. Our findings indicate that Purunã is more genetically related to the Charolais, Canchim, and Angus breeds than Caracu or Nellore. The levels of inbreeding were shown to be small based on all the metrics evaluated and ranged from -0.009 to 0.029. A low (-0.12-0.31) correlation of the pedigree-based inbreeding compared to all the genomic inbreeding coefficients evaluated was observed. The LD average was 0.031 (±0.0517), and the consistency of the gametic phase was shown to be low for all the breed pairs, ranging from 0.42 to 0.27 to the distance of 20 Mb. The Ne values based on pedigree and genomic information were 158 and 115, respectively. A total of 1,839 ROHs were found, and the majority of them are of small length (<4 Mb). An important homozygous region was identified on BTA5 with pathways related to behavioral traits (sensory perception, detection of stimulus, and others), as well as candidate genes related to heat tolerance (MY O 1A), feed conversion rate (RDH5), and reproduction (AMDHD1). A total of 1,799 HERs were identified in the Purunã breed with 92.3% of them classified within the 0.5-1 Mb length group, and 19 HER islands were identified in the autosomal genome. These HER islands harbor genes involved in growth pathways, carcass weight (SDCBP), meat and carcass quality (MT2A), and marbling deposition (CISH). Despite the genetic relationship between Purunã and the founder breeds, a multi-breed genomic evaluation is likely not feasible due to their population structure and low consistency of the gametic phase among them.

8.
Curr Biol ; 32(16): 3650-3658.e4, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35779528

RESUMO

Comparative whole-genome analyses hold great power to illuminate commonalities and differences in the evolution of related species that share similar ecologies. The mustelid subfamily Lutrinae includes 13 currently recognized extant species of otters,1-5 a semiaquatic group whose evolutionary history is incompletely understood. We assembled a dataset comprising 24 genomes from all living otter species, 14 of which were newly sequenced. We used this dataset to infer phylogenetic relationships and divergence times, to characterize patterns of genome-wide genealogical discordance, and to investigate demographic history and current genomic diversity. We found that genera Lutra, Aonyx, Amblonyx, and Lutrogale form a coherent clade that should be synonymized under Lutra, simplifying the taxonomic structure of the subfamily. The poorly known tropical African Aonyx congicus and the more widespread Aonyx capensis were found to be reciprocally monophyletic (having diverged 440,000 years ago), supporting the validity of the former as a distinct species. We observed variable changes in effective population sizes over time among otters within and among continents, although several species showed similar trends of expansions and declines during the last 100,000 years. This has led to different levels of genomic diversity assessed by overall heterozygosity, genome-wide SNV density, and run of homozygosity burden. Interestingly, there were cases in which diversity metrics were consistent with the current threat status (mostly based on census size), highlighting the potential of genomic data for conservation assessment. Overall, our results shed light on otter evolutionary history and provide a framework for further in-depth comparative genomic studies targeting this group.


Assuntos
Lontras , Animais , Sequência de Bases , Lontras/genética , Filogenia
9.
Microbiol Spectr ; 10(1): e0124921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019701

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has shown a wide spectrum of clinical manifestations ranging from asymptomatic infections to severe disease and death. Pre-existing medical conditions and age have been mainly linked to the development of severe disease; however, the potential association of viral genetic characteristics with different clinical conditions remains unclear. SARS-CoV-2 variants with increased transmissibility were detected early in the pandemics, and several variants with potential relevance for public health are currently circulating around the world. In this study, we characterized 57 complete SARS-CoV-2 genomes during the exponential growth phase of the early epidemiological curve in Mexico, in April 2020. Patients were categorized under distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors, the patients were less than 60 years old and with no diagnosed comorbidities A trait-association phylogenomic approach was used to explore genotype-phenotype associations, represented by the co-occurrence of mutations, disease severity outcome categories, and clusters of Mexican sequences. Phylogenetic results revealed a higher genomic diversity compared to the initial viruses detected during the early stage of the local epidemic. We identified a total of 90 single nucleotide variants compared to the Wuhan-Hu-1 genome, including 54 nonsynonymous mutations. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors. IMPORTANCE The genetic association of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with different clinical conditions remains unclear and needs further investigation. In this study, we characterized 57 complete SARS-CoV-2 genomes from patients in Mexico with distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors the patients were less than 60 years old and with no diagnosed comorbidities. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors.


Assuntos
COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , Adulto , Fatores Etários , Assistência Ambulatorial/estatística & dados numéricos , COVID-19/complicações , COVID-19/mortalidade , Análise por Conglomerados , Feminino , Genótipo , Hospitalização/estatística & dados numéricos , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Mutação , Fenótipo , Filogenia , Cobertura de Condição Pré-Existente/estatística & dados numéricos , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Adulto Jovem
10.
Front Plant Sci ; 13: 1052680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589083

RESUMO

Background: Huanglongbing (HLB, yellow shoot disease) is a highly destructive citrus disease associated with a nonculturable bacterium, "Candidatus Liberibacter asiaticus" (CLas), which is transmitted by Asian citrus psyllid (ACP, Diaphorina citri). In Mexico, HLB was first reported in Tizimin, Yucatán, in 2009 and is now endemic in 351 municipalities of 25 states. Understanding the population diversity of CLas is critical for HLB management. Current CLas diversity research is exclusively based on analysis of the bacterial genome, which composed two regions, chromosome (> 1,000 genes) and prophage (about 40 genes). Methods and results: In this study, 40 CLas-infected ACP samples from 20 states in Mexico were collected. CLas was detected and confirmed by PCR assays. A prophage gene(terL)-based typing system (TTS) divided the Mexican CLas strains into two groups: Term-G including four strains from Yucatán and Chiapas, as well as strain psy62 from Florida, USA, and Term-A included all other 36 Mexican strains, as well as strain AHCA1 from California, USA. CLas diversity was further evaluated to include all chromosomal and prophage genes assisted by using machine learning (ML) tools to resolve multidimensional data handling issues. A Term-G strain (YTMX) and a Term-A strain (BCSMX) were sequenced and analyzed. The two Mexican genome sequences along with the CLas genome sequences available in GenBank were studied. An unsupervised ML was implemented through principal component analysis (PCA) on average nucleotide identities (ANIs) of CLas whole genome sequences; And a supervised ML was implemented through sparse partial least squares discriminant analysis (sPLS-DA) on single nucleotide polymorphisms (SNPs) of coding genes of CLas guided by the TTS. Two CLas Geno-groups, Geno-group 1 that extended Term-A and Geno-group 2 that extended Term-G, were established. Conclusions: This study concluded that: 1) there were at least two different introductions of CLas into Mexico; 2) CLas strains between Mexico and USA are closely related; and 3) The two Geno-groups provide the basis for future CLas subspecies research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA