Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003617

RESUMO

Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Prognóstico , Transdução de Sinais , Movimento Celular/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Life (Basel) ; 13(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004348

RESUMO

The purine nucleobases adenine and guanine are complex organic molecules that are essential for life. Despite their ubiquitous presence on Earth, purines have yet to be detected in observations of astronomical environments. This work therefore proposes to study the infrared spectra of purines linked to terrestrial biochemical processes under conditions analogous to those found in the interstellar medium. The infrared spectra of adenine and guanine, both in neat form and embedded within an ice made of H2O:NH3:CH4:CO:CH3OH (10:1:1:1:1), were analysed with the aim of determining which bands attributable to adenine and/or guanine can be observed in the infrared spectrum of an astrophysical ice analogue rich in other volatile species known to be abundant in dense molecular clouds. The spectrum of adenine and guanine mixed together was also analysed. This study has identified three purine nucleobase infrared absorption bands that do not overlap with bands attributable to the volatiles that are ubiquitous in the dense interstellar medium. Therefore, these three bands, which are located at 1255, 940, and 878 cm-1, are proposed as an infrared spectral signature for adenine, guanine, or a mixture of these molecules in astrophysical ices. All three bands have integrated molar absorptivity values (ψ) greater than 4 km mol-1, meaning that they should be readily observable in astronomical targets. Therefore, if these three bands were to be observed together in the same target, then it is possible to propose the presence of a purine molecule (i.e., adenine or guanine) there.

3.
Cell Signal ; 109: 110749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290677

RESUMO

Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of ßPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.


Assuntos
Neoplasias , Proteínas rho de Ligação ao GTP , Humanos , Proteínas rho de Ligação ao GTP/metabolismo , Células Endoteliais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/fisiologia , Neoplasias/metabolismo , Microambiente Tumoral
4.
BMC Biol ; 21(1): 66, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013555

RESUMO

BACKGROUND: Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS: In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of ß anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS: Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.


Assuntos
Peixes , Guanina , Animais , Guanina/química , Pele , Bactérias
5.
Anal Biochem ; 671: 115135, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019253

RESUMO

Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.


Assuntos
5-Metilcitosina , Boro , Humanos , Oxirredução , Eletrodos , Guanina
6.
Pathogens ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36678417

RESUMO

Schistosomiasis is one of the most important human helminthiases worldwide. Praziquantel is the current treatment, and no vaccine is available until the present. Thus, the presented study aimed to evaluate the immunization effects with recombinant Schistosoma mansoni enzymes: Adenosine Kinase (AK) and Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), as well as a MIX of the two enzymes. Female Balb/c mice were immunized in three doses, and 15 days after the last immunization, animals were infected with S. mansoni. Our results showed that the group MIX presented a reduction in the eggs in feces by 30.74% and 29%, respectively, in the adult worms. The groups AK, HGPRT and MIX could produce IgG1 antibodies, and the groups AK and MIX produced IgE antibodies anti-enzymes and anti-S. mansoni total proteins. The groups AK, HGPRT and MIX induced a reduction in the eosinophils in the peritoneal cavity. Besides, the group AK showed a decrease in the number of hepatic granulomas (41.81%) and the eggs present in the liver (42.30%). Therefore, it suggests that immunization with these enzymes can contribute to schistosomiasis control, as well as help to modulate experimental infection inducing a reduction of physiopathology in the disease.

7.
Biomolecules ; 12(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009035

RESUMO

The final maturation step of the 60S ribosomal subunit requires the release of eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) to enter the pool of mature ribosomes capable of engaging in translation. This process is mediated by the concerted action of the Elongation Factor-like 1 (human EFL1, yeast Efl1) GTPase and its effector, the Shwachman-Bodian-Diamond syndrome protein (human SBDS, yeast Sdo1). Mutations in these proteins prevent the release of eIF6 and cause a disease known as Shwachman-Diamond Syndrome (SDS). While some mutations in EFL1 or SBDS result in insufficient proteins to meet the cell production of mature large ribosomal subunits, others do not affect the expression levels with unclear molecular defects. We studied the functional consequences of one such mutation using Saccharomyces cerevisiae Efl1 R1086Q, equivalent to human EFL1 R1095Q described in SDS patients. We characterised the enzyme kinetics and energetic basis outlining the recognition of this mutant to guanine nucleotides and Sdo1, and their interplay in solution. From our data, we propose a model where the conformational change in Efl1 depends on a long-distance network of interactions that are disrupted in mutant R1086Q, whereby Sdo1 and the guanine nucleotides no longer elicit the conformational changes previously described in the wild-type protein. These findings point to the molecular malfunction of an EFL1 mutant and its possible impact on SDS pathology.


Assuntos
GTP Fosfo-Hidrolases , Saccharomyces cerevisiae , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos de Guanina/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Entropy (Basel) ; 24(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893007

RESUMO

We have proposed that the abiogenesis of life around the beginning of the Archean may have been an example of "spontaneous" microscopic dissipative structuring of UV-C pigments under the prevailing surface ultraviolet solar spectrum. The thermodynamic function of these Archean pigments (the "fundamental molecules of life"), as for the visible pigments of today, was to dissipate the incident solar light into heat. We have previously described the non-equilibrium thermodynamics and the photochemical mechanisms which may have been involved in the dissipative structuring of the purines adenine and hypoxanthine from the common precursor molecules of hydrogen cyanide and water under this UV light. In this article, we extend our analysis to include the production of the other two important purines, guanine and xanthine. The photochemical reactions are presumed to occur within a fatty acid vesicle floating on a hot (∼80 ∘C) neutral pH ocean surface exposed to the prevailing UV-C light. Reaction-diffusion equations are resolved under different environmental conditions. Significant amounts of adenine (∼10-5 M) and guanine (∼10-6 M) are obtained within 60 Archean days, starting from realistic concentrations of the precursors hydrogen cyanide and cyanogen (∼10-5 M).

9.
J Mol Model ; 28(2): 43, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079869

RESUMO

The effect of vicinal molecular groups on the intrinsic acidity of a central guanine residue in short single-stranded DNA models and the potentials exerted by the backbone and the nucleobases on the leaving proton were determined by the fragment molecular orbital (FMO) method, in terms of quantum descriptors (QDs) and pair interaction interfragment decomposition analysis (PIEDA). The acidity of the central guanine moiety decreased with increasing oligonucleotide length, in response to changes by less than 1 eV in the ionization potential, global softness, electrophilicity index, and electronegativity descriptors. The differences in these descriptors were majorly interpreted in terms of the electrostatic influence of the negative charges residing on the backbone of the molecule. Additionally, this electric-field effect was determined explicitly for the displacement of the test hydronium ion to a distance of 250 Å from its original position, resulting in good agreement with calculations of the variation in Gibbs free energies, obtained from physical experiments conducted on the identical oligonucleotide sequences. The reported results are useful for biophysical applications of deoxyriboligonucleotides containing guanine residues in order to induce local negative charges at specific positions in the DNA chain.


Assuntos
Guanina/química , Modelos Químicos , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Prótons , Algoritmos , Conformação Molecular , Estrutura Molecular , Oligonucleotídeos/química , Eletricidade Estática
10.
J Biol Chem ; 298(1): 101440, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808208

RESUMO

Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gßγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression-based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein-coupled LPA receptors via the Gßγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gßγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Neoplasias Pulmonares , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Animais , Movimento Celular , Progressão da Doença , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA