Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Environ Sci Pollut Res Int ; 31(38): 50857-50873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39098971

RESUMO

In this study, four Brazilian clays (Bofe, Verde-lodo, commercial Fluidgel, and expanded commercial vermiculite) were evaluated for their adsorptive capacity and removal percentage in relation to different toxic metals (Ni2+, Cd2+, Zn2+, and Cu2+). The best results were obtained by expanded vermiculite, with cadmium removal reaching values of 95%. The most promising clay was modified by the sodification process, and the metal cadmium was used to evaluate the ion exchange process. The clays expanded vermiculite (EV) and VNa-sodified vermiculite were evaluated by equilibrium study at 25, 35, and 45 °C. At 25 °C, EV obtained a maximum adsorption capacity of 0.368 mmol/g and sodified vermiculite 0.480 mmol/g, which represents an improvement of 30.4% in modified clay capacity. At 45 °C, the sodified vermiculite reached 0.970 mmol/g adsorption capacity. The Langmuir, Redlich-Peterson Freundlich, and Dubinin-Raduskevich models were adjusted to the results. Langmuir provided the best fit among the models. The thermodynamic quantities (ΔS, ΔH, and ΔG) demonstrated that the process is spontaneous and endothermic and the metal is captured by physisorption and chemisorption in the studied temperature range. For the ion exchange equilibrium, the binary Langmuir and binary Langmuir-Freundlich models were adjusted to the expanded vermiculite and sodified vermiculite isotherms, respectively. Both models were predictive. Thermal analysis indicated good heat resistance even after material modification. The apparent and real densities demonstrated that after each treatment or contamination, the clayey material undergoes contraction in its structure. An improved efficiency of the adsorbent was found after sodification.


Assuntos
Silicatos de Alumínio , Argila , Termodinâmica , Adsorção , Argila/química , Brasil , Troca Iônica , Silicatos de Alumínio/química , Poluentes Químicos da Água/química , Metais/química
2.
Environ Geochem Health ; 46(9): 354, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080128

RESUMO

Ash emission from volcanic eruptions affects the environment, society, and human health. This study shows the total concentration and lung bioaccessible fraction of eight potential toxic metal(loid)s in five Popocatépetl ashfall samples. Mineralogical phases and particle size distribution of the ashfall were analyzed by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) techniques, respectively. The bioaccessibility test of Gamble solution (GS) and Artificial Lysosomal Fluid (ALF) were conducted to simulate extracellular (pH 7) and intracellular (pH 4.5) conditions, respectively. The studied metal(loid)s showed the following total concentration (mg kg-1): 1.98 (As), 0.17 (Cd), 134.09 (Cr), 8.66 (Cu), 697.33 (Mn), 55.35 (Ni), 8.77 (Pb), and 104.10 (Zn). Geochemical indices suggested that some metal(loid)s are slightly enriched compared to the local soil background concentrations. Several mineralogical phases were identified in the collected ashfall deposits, such as plagioclase, pyroxene, and Fe-Ti oxide, among others. According to the risk assessment results, the non-carcinogenic risk related to ashfall exposure returns an HQ > 1 for children. In contrast, the estimation of carcinogenic risk was found to be within the tolerable limit. Metal(loid)s showed low bioaccessibility (< 30%) in GS and ALF, with the highest values found in ALF solution for As (12.18%) and Cu (7.57%). Despite their metal-bioaccessibility, our findings also showed that dominant ash particle size ranged between fine (< 2.5 µm) and extremely fine (< 1 µm), considered highly inhalable fractions. The results obtained in this work indicate that volcanic ashes are bioinsoluble and biodurable, and exhibit low bioaccessibility when in contact with lung human fluids.


Assuntos
Erupções Vulcânicas , Medição de Risco , Humanos , México , Disponibilidade Biológica , Tamanho da Partícula , Pulmão/metabolismo , Pulmão/química , Monitoramento Ambiental/métodos , Microscopia Eletrônica de Varredura , Metais/análise , Difração de Raios X , Exposição Ambiental , Poluentes Atmosféricos/análise
3.
Environ Res ; 260: 119619, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009213

RESUMO

BACKGROUND: This study investigates the contamination level, spatial distribution, pollution sources, potential ecological risks, and human health risks associated with heavy metal(loid)s (i.e., arsenic (As), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn)) in surface soils within the mining region of Matehuala, located in central Mexico. OBJECTIVES: The primary objectives are to estimate the contamination level of heavy metal(loid)s, identify pollution sources, assess potential ecological risks, and evaluate human health risks associated with heavy metal(loid) contamination. METHODS: Soil samples from the study area were analysed using various indices including Igeo, Cf, PLI, mCd, EF, and PERI to evaluate contamination levels. Source apportionment of heavy metal(loid)s was conducted using the APCS-MLR and PMF receptor models. Spatial distribution patterns were determined using the most efficient interpolation technique among five different approaches. The total carcinogenic risk index (TCR) and total non-carcinogenic index (THI) were used in this study to assess the potential carcinogenic and non-carcinogenic hazards posed by heavy metal(loid)s in surface soil to human health. RESULTS: The study reveals a high contamination level of heavy metal(loid)s in the surface soil, posing considerable ecological risks. As was identified as a priority metal for regulatory control measures. Mining and smelting activities were identified as the primary factors influencing heavy metal(loid) distributions. Based on spatial distribution mapping, concentrations were higher in the northern, western, and central regions of the study area. As and Fe were found to pose considerable and moderate ecological risks, respectively. Health risk evaluation indicated significant levels of carcinogenic risks for both adults and children, with higher risks for children. CONCLUSION: This study highlights the urgent need for monitoring heavy metal(loid) contamination in Matehuala's soils, particularly in regions experiencing strong economic growth, to mitigate potential human health and ecological risks associated with heavy metal(loid) pollution.


Assuntos
Monitoramento Ambiental , Metais Pesados , Mineração , Poluentes do Solo , México , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , Humanos , Monitoramento Ambiental/métodos
4.
Braz J Microbiol ; 55(3): 2131-2147, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38842788

RESUMO

Improper electronic waste management in the world especially in developing countries such as Iran has resulted in environmental pollution. Copper, nickel, and manganese are from the most concerned soil contaminating heavy metals which found in many electronic devices that are not properly processed. The aim of this study was to investigate the biological removal of copper, nickel, and manganese by Bacillus species isolated from a landfill of electronic waste (Zainal Pass hills located in Isfahan, Iran) which is the and to produce nanoparticles from the studied metals by the isolated bacteria. The amounts of copper, nickel, and manganese in the soil was measured as 1.9 × 104 mg/kg, 0.011 × 104 mg/kg and 0.013 × 104 mg/kg, respectively based on ICP-OES analysis, which was significantly higher than normal (0.02 mg/kg, 0.05 mg/kg, and 2 mg/kg, respectively. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of metals on the bacterial isolates was determined. The biosorption of metals by the bacteria was evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES). The metal nanoparticles were synthetized utilizing the isolates in culture media containing the heavy metals with the concentrations to which the isolates had shown resistance. X ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used for the evaluation of the fabrication of the produced metal nanoparticles. Based on the findings of this study, a total of 15 bacterial isolates were obtained from the soil samples. The obtained MICs of copper, nickel, and manganese on the isolates were 40-300 mM, 4-10 mM, and 60-120 mM, respectively. The most resistant isolates to copper were FM1 and FM2 which were able to bio-remove 79.81% and 68.69% of the metal, respectively. FM4 and FM5 were respectively the most resistant isolate to nickel and manganese and were able to bio-remove 86.74% and 91.96% of the metals, respectively. FM1, FM2, FM4, and FM5 was molecularly identified as Bacillus cereus, Bacillus thuringiensis, Bacillus paramycoides, and Bacillus wiedmannii, respectively. The results of XRD, SEM and EDS showed conversion of the copper and manganese into spherical and oval nanoparticles with the approximate sizes of 20-40 nm. Due to the fact that the novel strains in this study showed high resistance to copper, nickel, and manganese and high adsorption of the metals, they can be used in the future, as suitable strains for the bio-removal of these metals from electronic and other industrial wastes.


Assuntos
Bacillus , Cobre , Resíduo Eletrônico , Manganês , Nanopartículas Metálicas , Níquel , Microbiologia do Solo , Poluentes do Solo , Níquel/metabolismo , Níquel/química , Cobre/metabolismo , Bacillus/metabolismo , Bacillus/isolamento & purificação , Bacillus/classificação , Poluentes do Solo/metabolismo , Nanopartículas Metálicas/química , Manganês/metabolismo , Testes de Sensibilidade Microbiana , Irã (Geográfico) , Biodegradação Ambiental , Solo/química , Metais Pesados/metabolismo
5.
Zoonoses Public Health ; 71(5): 591-599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702905

RESUMO

AIMS: Our aim is to characterize through whole-genome sequencing (WGS) the antimicrobial resistance (AMR) and heavy metal tolerance (HMT) genes content, plasmid presence, virulence potential and genomic diversity of the rare non-typhoid Salmonella enterica serovar Orion (S. Orion) from 19 countries of the African, American, Eastern Mediterranean, European, Southeastern Asia and Western Pacific regions. METHODS AND RESULTS: Totally 324 S. Orion genomes were screened for AMR, HMT and virulence genes, plasmids and Salmonella Pathogenicity Islands (SPIs). Genomic diversity was investigated using Multi-Locus Sequence Typing (MLST) and core-genome MLST (cgMLST). Efflux pump encoding genes mdsA and mdsB were present in all genomes analysed, while quinolone chromosomal point mutations and aminoglycoside, beta-lactam, colistin, lincosamide, macrolide, phenicol, sulphonamide, trimethoprim, tetracycline and disinfectant resistance genes were found in 0.3%-5.9%. A total of 17 genomes (5.2%) from Canada, the United Kingdom, the USA and Tanzania showed a potential multi-drug resistance profile. Gold tolerance genes golS and golT were detected in all genomes analysed, while arsenic, copper, mercury, silver and tellurium tolerance genes were found in 0.3%-35.5%. Col(MGD2) was the most frequently detected plasmid, in 15.4% of the genomes. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, serum resistance, stress adaptation, type III secretion systems and six SPIs (1, 2, 3, 4, 5, 9, 12, 13, 14 and C63PI) were detected. ST639 was assigned to 89.2% of the S. Orion genomes, while cgMLST showed core-genome STs and clusters of strains specific by countries. CONCLUSION: The high virulence factor frequencies, the genomic similarity among some non-clinical and clinical strains circulating worldwide and the presence of a strain carrying a resistance gene against a last resource antimicrobial like colistin, highlight the potential risk of S. Orion strains for public health and food safety and reinforce the importance to not underestimate the potential hazard of rare non-typhoid Salmonella serovars.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Genoma Bacteriano , Salmonella enterica , Salmonella enterica/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/patogenicidade , Virulência/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Sequenciamento Completo do Genoma , Animais , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Sorogrupo , Plasmídeos/genética
6.
Heliyon ; 10(9): e30739, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765175

RESUMO

Metallic contaminants in Andean water resources influenced by mining activities poses risks to aquatic ecosystems and a challenge to regulatory agencies responsible for environmental compliance. In this study, the Ecological Risk Assessment (ERA) framework was adapted to assess dissolved heavy metal concentrations at 283 surface water monitoring stations near to six mining projects during the dry and wet seasons. Reports from OEFA-Peru on Early Environmental Assessment (EEA) were used to apply various criteria and non-parametric statistical tests. They included ecological, ecotoxicological, chemical, and regulatory factors. The main goal of this research was to identify, analyze, characterize, and compare the risks present at different trophic levels. These levels were categorized as T1 (Microalgae), T2 (Zooplankton and Benthic invertebrates), and T3 (Fish). Individual risk (IR) was estimated using the quotient model, while total risk (TR) was assessed using the additive probability rule. Rainbow trout (Oncorhynchus mykiss), representing trophic level T3, showed the highest sensitivity to Fe and Cu. Statistical tests ranked the IR as Fe > Cu > Zn > Mn > Pb (p < 0.01). The TR was more prevalent during the wet season compared to the dry season (p < 0.01). Notably, around 50 % of the monitoring stations (n = 142) were classified as high risk, and 9 % (n = 13) showed extremely high-risk values for Cu and Fe. The adapted ERA framework demonstrated great effectiveness in identifying critical points of metal contamination in high Andean aquatic ecosystems under mining influence. However, specialized studies are suggested that allow the sources of pollution to be associated with specific regulatory actions.

7.
Front Plant Sci ; 15: 1377964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633451

RESUMO

Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.

8.
Chemosphere ; 355: 141884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575083

RESUMO

Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água
9.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598029

RESUMO

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Assuntos
Antibacterianos , Metais Pesados , Animais , Humanos , Antibacterianos/farmacologia , Cobre , Metais Pesados/toxicidade , Ampicilina , Cloranfenicol
10.
Rev. crim ; 66(1): 25-46, 20240412. Tab, Ilus
Artigo em Espanhol | LILACS | ID: biblio-1553524

RESUMO

Introducción: En los contextos del conflicto armado convergen actividades que potencialmente pueden producir toxicidad por metales pesados; inclusive, muchas víctimas de artefactos explosivos improvisados portan esquirlas residuales interiorizadas, de composición y potencial toxicidad desconocidas. Ello ha sido poco estudiado. Objetivo: Describir los niveles biológicos de plomo y mercurio en civiles supervivientes de la masacre de Bojayá, su eventual exposición actual, así como signos y síntomas compatibles con toxicidad crónica. Metodología: Estudio observacional descriptivo, tipo serie con 13 casos. Resultados: El 38.46 % de los casos tuvo niveles de plomo en sangre superiores o cercanos al valor límite superior, sin fuentes específicas identificadas. Un 46.15 % tuvo niveles mercuriales superiores o cercanos al límite de referencia, y se los considera exposición ambiental por minería aurífera regional. La valoración clínica toxicológica mostró síntomas y signos clínicos potencialmente asociados con toxicidad crónica por metales. Conclusión: Hubo presencia de residuos de artefactos explosivos en personas con hallazgos sugestivos de toxicidad por plomo o mercurio, sin que pueda afirmarse una relación directa y específica entre los dos aspectos; algunos casos sugieren exposición ambiental para mercurio, y exposición a proyectiles para el plomo, relacionadas con dinámicas del conflicto armado. Son necesarios estudios adicionales para afirmar la existencia de asociaciones causales.


Introduction: In the contexts of armed conflict, activities converge that can potentially produce heavy metal toxicity; including many victims of improvised explosive devices carry internalised residual shrapnel, of unknown composition and potential toxicity. This has been little studied. Objective: To describe the biological levels of lead and mercury in civilian survivors of the Bojayá massacre, their possible current exposure, as well as signs and symptoms compatible with chronic toxicity. Methodology: Descriptive observational study, serial type with 13 cases. Results: 38.46 % of the cases had blood lead levels above or close to the upper limit value, with no specific sources identified. 46.15 % had mercury levels above or close to the reference limit, and were considered environmental exposure from regional gold mining. Clinical toxicological assessment showed clinical signs and symptoms potentially associated with chronic metal toxicity. Conclusion: There was a presence of explosive ordnance residues in individuals with findings suggestive of lead or mercury toxicity, without a direct and specific relationship between the two; some cases suggest environmental exposure for mercury, and projectile exposure for lead, related to the dynamics of the armed conflict. Further studies are needed to affirm the existence of causal associations.


Introdução: Nos contextos de conflito armado, convergem atividades que podem potencialmente produzir toxicidade por metais pesados; Na verdade, muitas vítimas de dispositivos explosivos improvisados carregam lascas residuais internalizadas de composição desconhecida e potencial toxicidade. Isto tem sido pouco estudado. Objetivo: Descrever os níveis biológicos de chumbo e mercúrio em civis sobreviventes do massacre de Bojayá, sua eventual exposição atual, bem como sinais e sintomas compatíveis com toxicidade crônica. Metodologia: Estudo observacional descritivo, tipo série com 13 casos. Resultados: 38.46 % dos casos apresentaram níveis de chumbo no sangue superiores ou próximos ao valor limite superior, sem fontes específicas identificadas. 46.15 % apresentaram níveis de mercúrio superiores ou próximos ao limite de referência e são considerados exposição ambiental devido à mineração regional de ouro. A avaliação clínica toxicológica mostrou sintomas e sinais clínicos potencialmente associados à toxicidade crônica por metais. Conclusão: Houve presença de resíduos de artefatos explosivos em pessoas com achados sugestivos de toxicidade por chumbo ou mercúrio, sem que se pudesse afirmar uma relação direta e específica entre os dois aspectos; Alguns casos sugerem exposição ambiental ao mercúrio e exposição a projéteis de chumbo, relacionadas com a dinâmica do conflito armado. Estudos adicionais são necessários para confirmar a existência de associações causais.


Assuntos
Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA