Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 22(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023404

RESUMO

Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW) proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP) presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of -38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer) interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW), BSA, and captured LMW proteins (myoglobin and aprotinin), as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1-3.4 µg/mg.


Assuntos
Nanopartículas/química , Peptídeos/química , Proteínas/química , Dióxido de Silício/química , Adsorção , Técnicas de Química Sintética , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Venom Res ; 6: 11-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605039

RESUMO

Rhopalurus junceus scorpion venom has been identified as a natural extract with anticancer potential. Interestingly, this scorpion venom does not cause adverse symptoms in humans. However, there is scarce information about its composition and enzymatic activity. In this work, we determined the electrophoretic profile of the venom, the gelatinase and caseinolytic activity, and the phospholipase A2 (PLA2) and hemolytic activity. The effect of different venom doses (6.25, 12.5 and 25 mg/kg) on gastrocnemius muscle was also measured as CK and LDH activity in serum. The presence of hyaluronidase was determined by turbidimetric assay. The effect of different fractions obtained by gel filtration chromatography were evaluated at different concentrations (0.05, 0.1, 0.2, 0.4, 0.6mg/ml) against lung cancer cell A549 and lung normal cell MRC-5 using MTT assay. The electrophoretic profile demonstrated the presence of proteins bands around 67kDa, 43kDa, 18.4kDa and a majority band below 14.3kDa. The venom did not showed caseinolytic, gelatinase, PLA2 and hemolytic activity even at highest venom concentration used in the study. Scorpion venom only showed a significant toxic effect on gastrocnemius muscles identified by CK and LDH release after subcutaneous injection of 12.5 and 25mg/kg. Low molecular weight fractions (<4kDa) induced a significant cytotoxicity in A549 cells while high molecular weight proteins (45-60kDa) were responsible for hyaluronidase activity and toxic effect against MRC-5. Experiments indicate that Rhopalurus junceus scorpion venom has low enzymatic activity, which could contribute to the low toxic potential of this scorpion venom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA