Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Front Vet Sci ; 11: 1415658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113726

RESUMO

Introduction: Corneal ulcers are common lesions in both human and veterinary medicine. However, only a few studies have evaluated the efficacy of cross-linked hyaluronic acid (X-HA) eye drops on corneal wound healing. To our knowledge, this is the first study to demonstrate and compare the efficacy of amniotic membrane extract eye drops (AMEED) and X-HA for corneal wound healing in rats. Material and methods: A total of 15 male Wistar rats (30 eyes) were used in this study. Then, 10 eyes were treated with X-HA, AMEED, or 0.9% saline. After general and topical anesthesia, a superficial corneal ulcer was created using a corneal trephine. The defect was further polished with a diamond burr. Three groups of 10 eyes each were treated with either one drop of 0.75% X-HA or AMEED or 0.9% saline (control), administered every 12 h for a duration of 72 h. The median epithelial defect area (MEDA), expressed as a percentage of the total corneal surface, was measured at 0, 12, 24, 36, 48, and 72 h. Re-epithelization time scores were also evaluated. The Kruskal-Wallis test was used to compare median times for re-epithelization and histopathologic scores between groups, while the Friedman test (for paired data) was employed to compare results from the serial analysis of MEDA and vascularization scores between groups. Results: MEDA was not significantly different between X-HA and AMEED. However, MEDA was significantly smaller in the X-HA group compared to the control group at 36 h (2.73 interquartile range (IQR) 5.52% x 9.95 IQR 9.10%, P=0.024) and 48 h (0.00 IQR 0.26% x 6.30 IQR 8.54%, P=0.030). The overall time for re-epithelization was significantly lower in the X-HA group (3.00 IQR 3.00) compared to the AMEED (6.5 IQR 3.00) and control (7.00 IQR 1.00) groups (P=0.035). Vascularization, hydropic degeneration, and epithelial-stromal separation were significantly less observed in samples in the X-HA-treated compared to samples in the AMEED- and saline-treated groups. Significantly more corneal epithelium cells were labeled for caspase3 in samples from the AMEED- and saline-treated groups compared to those from the X-HA-treated group. Discussion: Topical X-HA has been shown to accelerate corneal epithelial healing. AMEED did not decrease corneal re-epithelialization time. X-HA may also potentially be used as an adjunct therapy for treating corneal ulcers in clinical situations.

2.
Biomater Adv ; 164: 213966, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094443

RESUMO

Osteomyelitis is an inflammation of bone tissue usually caused by pyogenic bacteria. The most recurrent clinical approach consists of bone debridement followed by parenteral administration of antibiotics. However, systemic antibiotic treatment has limitations regarding absorption rate and bioavailability over time. The main challenge of osteomyelitis treatment consists of coupling the persistent infection treatment with the regeneration of the bone debrided. In this work, we developed an injectable drug delivery system based on poloxamer 407 hydrogel containing undoped Mg, Zn-doped tricalcium phosphate (ß-TCP), and teicoplanin, a broad-spectrum antibiotic. We evaluated how the addition of teicoplanin and ß-TCP affected the micellization, gelation, particle size, and surface charge of the hydrogel. Later, we studied the hydrogel degradation and drug delivery kinetics. Finally, the bactericidal, biocompatibility, and osteogenic properties were evaluated through in vitro studies and confirmed by in vivo Wistar rat models. Teicoplanin was found to be encapsulated in the corona portions of the hydrogel micelles, yielding a bigger hydrodynamics radius. The encapsulated teicoplanin showed a sustained release over the evaluated period, enough to trigger antibacterial properties against Gram-positive bacteria. Besides, the formulations were biocompatible and showed bone healing ability and osteogenic properties. Finally, in vivo studies confirmed that the proposed locally injected formulations yielded osteomyelitis treatment with superior outcomes than parenteral administration while promoting bone regeneration. In conclusion, the presented formulations are promising drug delivery systems for osteomyelitis treatment and deserve further technological improvements.


Assuntos
Antibacterianos , Fosfatos de Cálcio , Hidrogéis , Osteogênese , Osteomielite , Ratos Wistar , Teicoplanina , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Animais , Fosfatos de Cálcio/química , Teicoplanina/administração & dosagem , Teicoplanina/farmacologia , Teicoplanina/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Hidrogéis/química , Hidrogéis/administração & dosagem , Osteogênese/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Poloxâmero/química
3.
Methods ; 230: 21-31, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074539

RESUMO

Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.


Assuntos
Hidrogéis , Humanos , Hidrogéis/química , Soluções Oftálmicas/química , Impressão Tridimensional , Córnea/efeitos dos fármacos , Córnea/metabolismo , Administração Oftálmica , Membranas Artificiais
4.
Gels ; 10(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057457

RESUMO

Fertilizers with enhanced efficiency or high-efficiency fertilizers increase the nutrient availability, minimize losses, and reduce costs, thereby increasing crop yields and food production while mitigating environmental impacts. This research evaluates the synthesis of biodegradable hydrogels from cassava starch and citric acid for agrochemical applications. Hydrogels were synthesized using water as the solvent and applied for the controlled release of macronutrients (N and K). Four concentrations of nutrient-containing salts were tested (0.5 to 10.0% w/w). Materials were analyzed using ATR-FTIR spectroscopy and swelling studies. The presence of nutrients reduced both the crosslinking efficacy and the water absorption capacity, with the latter dropping from 183.4 ± 0.6% to 117.9 ± 3.7% and 157.4 ± 25.0% for hydrogels loaded with NH4Cl and KCl, respectively. The cumulative release of K and N from the hydrogel was monitored for 144 h and examined using kinetics models, revealing that the releases follow Fickian's diffusion and anomalous diffusion, respectively. Additionally, the material was formed using cassava with peel previously milled to reduce the production costs, and its potential for nutrient-controlled delivery was evaluated, with the finding that this hydrogel decreases the release rate of nitrogen. The results suggest that these biomaterials may have promising applications in the agrochemical industry in the making of high-efficiency fertilizers.

5.
J Biomed Mater Res A ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015005

RESUMO

The objective of this study was to create injectable photo-crosslinkable biomaterials, using gelatin methacryloyl (GelMA) hydrogel, combined with a decellularized bone matrix (BMdc) and a deproteinized (BMdp) bovine bone matrix. These were intended to serve as bioactive scaffolds for dentin regeneration. The parameters for GelMA hydrogel fabrication were initially selected, followed by the incorporation of BMdc and BMdp at a 1% (w/v) ratio. Nano-hydroxyapatite (nHA) was also included as a control. A physicochemical characterization was conducted, with FTIR analysis indicating that the mineral phase was complexed with GelMA, and BMdc was chemically bonded to the amide groups of gelatin. The porous structure was preserved post-BMdc incorporation, with bone particles incorporated alongside the pores. Conversely, the mineral phase was situated inside the pore opening, affecting the degree of porosity. The mineral phase did not modify the degradability of GelMA, even under conditions of type I collagenase-mediated enzymatic challenge, allowing hydrogel injection and increased mechanical strength. Subsequently, human dental pulp cells (HDPCs) were seeded onto the hydrogels. The cells remained viable and proliferative, irrespective of the GelMA composition. All mineral phases resulted in a significant increase in alkaline phosphatase activity and mineralized matrix deposition. However, GelMA-BMdc exhibited higher cell expression values, significantly surpassing those of all other formulations. In conclusion, our results showed that GelMA-BMdc produced a porous and stable hydrogel, capable of enhancing odontoblastic differentiation and mineral deposition when in contact with HDPCs, thereby showing potential for dentin regeneration.

6.
Anal Sci ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871978

RESUMO

The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (R2 ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.

7.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891425

RESUMO

Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and exhibit an excellent swelling ratio of ~180-200% w/w. Our electrochemical impedance studies indicate that the charge transport and transfer processes at the channel material based on conducting hydrogels are not trivial compared to conducting polymeric films. The most relevant feature is that the ionic transport through the swollen hydrogel is clearly different from the transport through the solution, and the charge transfer and diffusion processes govern the low-frequency regime. In addition, we have performed in operando Raman spectroscopy analyses in the OECT devices supported by first-principle computational simulations corroborating the doping/de-doping processes under different applied gate voltages. The maximum transconductance (gm~1.05 µS) and maximum volumetric capacitance (C*~2.3 F.cm-3) values indicate that these conducting hydrogels can be promising candidates as channel materials for OECT devices.

8.
Pharmaceutics ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38931824

RESUMO

The treatment of skin and soft tissue infections (SSTIs) can be challenging due to bacterial resistance, particularly from strains like MRSA and biofilm formation. However, combining conventional antibiotics with natural products shows promise in treating SSTIs. The objective of this study is to develop a nanoemulsion-based hydrogel containing Protium spruceanum extract and mupirocin and evaluate its potential for the treatment of SSTIs. The nanoemulsion was obtained by phase inversion and subsequently characterized. The antibacterial activity was evaluated in vitro against S. aureus MRSA, including the synergism of the combination, changes in membrane permeability using flow cytometry, and the anti-biofilm effect. In addition, the irritative potential was evaluated by the HET-CAM assay. The combination exhibited synergistic antibacterial activity against S. aureus and MRSA due to the extract enhancing membrane permeability. The hydrogel demonstrated suitable physicochemical properties, inhibited biofilm formation, and exhibited low irritation. The formulation was nanometric (176.0 ± 1.656 nm) and monodisperse (polydispersity index 0.286 ± 0.011). It exhibited a controlled release profile at 48 h and high encapsulation efficacy (94.29 ± 4.54% for quercitrin and 94.20 ± 5.44% for mupirocin). Therefore, these findings suggest that the hydrogel developed could be a safe and effective option for treating SSTIs.

9.
Talanta ; 276: 126203, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718648

RESUMO

T-2 toxin, a hazardous mycotoxin often present in cereals and products based on cereals, poses a substantial risk to humans and animals due to its high toxicity. The development of uncomplicated, quick and highly sensitive methods for detecting T-2 toxin is imperative. In this work, a portable sensing system was constructed using water column height as a readout device in combination with a controlled release system, which allows for an accurate quantitative analysis of T-2 toxin without the need for expensive instrumentation or skilled technicians. Hyaluronic acid (HA) hydrogel was constructed by double cross-linked DNA/aptamer hybrids with polyethyleneimine (PEI) and embedded with platinum nanoparticles (Pt NPs). The aptamer specifically bound to T-2 toxin in its presence, resulting in the disruption of the hydrogel and subsequent release of the Pt NPs. These Pt NPs were later mixed with a solution of H2O2 in a confined reaction flask, leading to the decomposition of H2O2 into O2. A glass capillary tube containing a column of red water had been inserted into the cap of the reaction flask, and the low solubility of O2 led to an increase in pressure within the reaction unit, causing the red water column to rise. There is a good linear correlation between the height of the capillary liquid level and the T-2 toxin concentration in the range of 20 ng/mL to 6 µg/mL. The system has been successfully used to detect T-2 toxin in samples of barley tea and corn.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Platina , Toxina T-2 , Toxina T-2/análise , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Platina/química , Água/química , DNA/química , DNA/análise , Hidrogéis/química , Limite de Detecção , Ácido Hialurônico/química , Polietilenoimina/química
10.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794145

RESUMO

Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a polyacrylamide/methylcellulose hydrogel containing propolis as an active ingredient, to serve as a wound dressing alternative, for the treatment of skin lesions. The hydrogels were prepared using free radical polymerization, and were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, swelling capacity, mechanical and rheological properties, UV-Vis spectroscopy, antioxidant activity by the DPPH, ABTS and FRAP assays and biocompatibility determined in Vero cells and J774 macrophages by the MTT assay. Hydrogels showed a porous and foliaceous structure with a well-defined network, a good ability to absorb water and aqueous solutions simulating body fluids as well as desirable mechanical properties and pseudoplastic behavior. In hydrogels containing 1.0 and 2.5% propolis, the contents of total polyphenols were 24.74 ± 1.71 mg GAE/g and 32.10 ± 1.01 mg GAE/g and those of total flavonoids 8.01 ± 0.99 mg QE/g and 13.81 ± 0.71 mg QE/g, respectively, in addition to good antioxidant activity determined with all three methods used. Therefore, hydrogels containing propolis extract, may serve as a promising alternative wound dressing for the treatment of skin lesions, due to their anti-oxidant properties, low cost and availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA