Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neuroscience ; 555: 125-133, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39038598

RESUMO

The role of adenosine receptors in fascial manipulation-induced analgesia has not yet been investigated. The purpose of this study was to evaluate the involvement of the adenosine A1 receptor (A1R) in the antihyperalgesic effect of plantar fascia manipulation (PFM), specifically in mice with peripheral inflammation. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical hyperalgesia and edema. The mice underwent PFM for either 3, 9 or 15 min. Response frequency to mechanical stimuli was then assessed at 24 and 96 h after plantar CFA injection. The adenosinergic receptors were assessed by systemic (intraperitoneal, i.p.), central (intrathecal, i.t.), and peripheral (intraplantar, i.pl.) administration of caffeine. The participation of the A1R was investigated using the 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective A1R subtype antagonist. PFM inhibited mechanical hyperalgesia induced by CFA injection and did not reduce paw edema. Furthermore, the antihyperalgesic effect of PFM was prevented by pretreatment of the animals with caffeine given by i.p., i.pl., and i.t. routes. In addition, i.pl. and i.t. administrations of DPCPX blocked the antihyperalgesia caused by PFM. These observations indicate that adenosine receptors mediate the antihyperalgesic effect of PFM. Caffeine's inhibition of PFM-induced antihyperalgesia suggests that a more precise understanding of how fascia-manipulation and caffeine interact is warranted.


Assuntos
Modelos Animais de Doenças , Adjuvante de Freund , Hiperalgesia , Inflamação , Receptor A1 de Adenosina , Xantinas , Animais , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Camundongos , Masculino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Xantinas/farmacologia , Fáscia/efeitos dos fármacos , Cafeína/farmacologia , Cafeína/administração & dosagem , Analgesia/métodos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia
2.
Pharmacology ; : 1-18, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643765

RESUMO

INTRODUCTION: Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE), and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS: Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS: The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-ß, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-ß injection; (3) the non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-ß; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION: These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-ß.

3.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538230

RESUMO

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Paclitaxel/efeitos adversos , Carragenina/efeitos adversos , Cálcio , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Formaldeído/efeitos adversos , Gânglios Espinais , Proteínas do Tecido Nervoso , Conexinas/genética , Conexinas/uso terapêutico
4.
Front Integr Neurosci ; 17: 1242278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901799

RESUMO

Objective: This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) associated with physical exercise, i.e., swimming, in mice with peripheral inflammation. Methods: The pain model was induced by intraplantar (i.pl.) injection of Freund's complete adjuvant (CFA). Sixty-four male Swiss mice (35-40 g) received an i.pl. of CFA and underwent behavioral tests, i.e., mechanical hyperalgesia, edema, and paw temperature tests. Additionally, cytokine levels, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay. Mice were treated with swimming exercise for 30 min alone or associated with different time protocols (10, 20, or 30 min) of stimulation in the left ear with random frequency during four consecutive days. Results: pVNS for 20 min prolonged the antihyperalgesic effect for up to 2 h, 24 h after CFA injection. pVNS for 30 min prolonged the antihyperalgesic effect for up to 7 h, 96 h after CFA injection. However, it did not alter the edema or temperature at both analyzed times (24 and 96 h). Furthermore, the combination of pVNS plus swimming exercise, but not swimming exercise alone, reduced IL-6 levels in the paw and spinal cord, as well as IL-10 levels in the spinal cord. Conclusion: pVNS potentiates the analgesic effect induced by swimming, which may be, at least in part, mediated by the modulation of inflammatory cytokines in the periphery (paw) and central nervous system (spinal cord). Therefore, the combination of these therapies may serve as an important adjunctive treatment for persistent inflammatory pain.

5.
Life Sci ; 314: 121302, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535404

RESUMO

Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.


Assuntos
Fibromialgia , Receptor B2 da Bradicinina , Humanos , Dor/tratamento farmacológico , Receptor B1 da Bradicinina , Peptídeos
6.
Front Cell Neurosci ; 16: 933874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106013

RESUMO

While current research highlights the role of Nav1. 8 sensory neurons from the peripheral nervous system, the anatomical and physiological characterization of encephalic Nav1.8 neurons remains unknown. Here, we use a Cre/fluorescent reporter mouse driven by the Nav1.8 gene promoter to reveal unexpected subpopulations of transiently-expressing Nav1.8 neurons within the limbic circuitry, a key mediator of the emotional component of pain. We observed that Nav1.8 neurons from the bed nuclei of the stria terminalis (BST), amygdala, and the periaqueductal gray (vPAG) are sensitive to noxious stimuli from an experimental model of chronic inflammatory pain. These findings identify a novel role for central Nav1.8 neurons in sensing nociception, which could be researched as a new approach to treating pain disorders.

7.
Mol Pain ; 18: 17448069221121307, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35974687

RESUMO

Chronic pain increases the risk of developing anxiety, with limbic areas being likely neurological substrates. Despite high clinical relevance, little is known about the precise behavioral, hormonal, and brain neuroplastic correlates of anxiety in the context of persistent pain. Previous studies have shown that decreased nociceptive thresholds in chronic pain models are paralleled by anxiety-like behavior in rats, but there are conflicting ideas regarding its effects on the stress response and circulating corticosterone levels. Even less is known about the molecular mechanisms through which the brain encodes pain-related anxiety. This study examines how persistent inflammatory pain in a rat model would impact anxiety-like behaviors and corticosterone release, and whether these changes would be reflected in levels of global DNA methylation in brain areas involved in stress regulation. Complete Freund's adjuvant (CFA) or saline was administered in the right hindpaw of adult male Wistar rats. Behavioral testing included the measurement of nociceptive thresholds (digital anesthesiometer), motor function (open field test), and anxiety-like behaviors (elevated plus maze and the dark-light box test). Corticosterone was measured via radioimmunoassay. Global DNA methylation (enzyme immunoassay) as well as DNMT3a levels (western blotting) were quantified in the amygdala, prefrontal cortex, and ventral hippocampus. CFA administration resulted in persistent reduction in nociceptive threshold in the absence of locomotor abnormalities. Increased anxiety-like behaviors were observed in the elevated plus maze and were accompanied by increased blood corticosterone levels 10 days after pain induction. Global DNA methylation was decreased in the amygdala, with no changes in DNMT3a abundance in any of the regions examined. Persistent inflammatory pain promotes anxiety -like behaviors, HPA axis activation, and epigenetic regulation through DNA methylation in the amygdala. These findings describe a molecular mechanism that links pain and stress in a well-characterized rodent model.


Assuntos
Dor Crônica , Corticosterona , Tonsila do Cerebelo , Animais , Ansiedade/complicações , Ansiedade/genética , Metilação de DNA/genética , Epigênese Genética , Adjuvante de Freund/toxicidade , Sistema Hipotálamo-Hipofisário , Masculino , Sistema Hipófise-Suprarrenal , Ratos , Ratos Wistar
8.
Brain Res Bull ; 188: 169-178, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952846

RESUMO

The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.


Assuntos
Dor Crônica , Compostos Organometálicos , Animais , Antioxidantes/metabolismo , Monóxido de Carbono/metabolismo , Sistema Nervoso Central/metabolismo , Dor Crônica/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Expert Rev Clin Pharmacol ; 15(3): 295-303, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35481412

RESUMO

INTRODUCTION: Pain is a multidimensional experience involving the biological, psychological, and social dimensions of each individual. Particularly, the biological aspects of pain conditions are a response of the neuroimmunology system and the control of painful conditions is a worldwide challenge for researchers. Although years of investigation on pain experience and treatment exist, the high prevalence of chronic pain is still a fact. AREAS COVERED: Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It regulates several metabolic pathways, including lipid biosynthesis and glucose metabolism, when activated. However, PPARγ activation also has a critical immunomodulatory and neuroprotective effect. EXPERT OPINION: This review summarizes the evidence of synthetic or natural PPARγ ligands such as 15d-PGJ2, epoxyeicosatrienoic acids, thiazolidinediones, and specialized pro-resolving mediators, representing an interesting therapeutic tool for pain control.


Assuntos
Imunomodulação , PPAR gama , Humanos , Imunomodulação/efeitos dos fármacos , Imunomodulação/fisiologia , Ligantes , PPAR gama/metabolismo , Dor , Prostaglandina D2/metabolismo , Tiazolidinedionas/uso terapêutico
10.
Life Sci ; 297: 120472, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278422

RESUMO

AIMS: This study aimed to investigate if titanium dioxide (TiO2) joint administration is a useful pre-clinical model to study sarcopenia-related chronic arthritis, and if exercise is a useful therapeutic approach against the pathogenesis of TiO2-induced arthritis and sarcopenia in mice. MAIN METHODS: Two experiments were conducted. Firstly, 36 female Swiss mice were randomly divided into a control group (n = 12) and two groups who received intra-articular TiO2 injections of 0.3-mg (n = 12) and 3-mg (n = 12), respectively. Mice were euthanized 4 and 8 weeks after TiO2 injections. Based on data of the first experiment, mice were exposed to four groups: control (C, n = 10), exercised (Ex, n = 10), injected with 3-mg of TiO2 (TiO2, n = 10), and injected with 3-mg of TiO2 and exercised (TiO2 + Ex, n = 10) for a total of 8-weeks. KEY FINDINGS: Eight-week of 3 mg of TiO2 joint administration promoted characteristics of chronic inflammation such as elevated histopathological score, inflammation, edema and pain. Hallmarks of sarcopenia were also observed such as muscle atrophy and loss of strength. Furthermore, voluntary exercise running reduced TiO2-induced chronic inflammation and pain, attenuating chronic arthritis-related muscle atrophy, strength loss and impairment of locomotion capacity. In addition, exercise was also able to prevent TiO2-induced collagen degradation, an important marker of functional and structural integrity loss of cartilage and chronic arthritis disease progression. SIGNIFICANCE: TiO2 joint administration mimed titanium prosthesis release-induced joint chronic arthritis and sarcopenia-related chronic arthritis, disturbances that were attenuated by voluntary exercise.


Assuntos
Artrite , Corrida , Sarcopenia , Animais , Feminino , Camundongos , Falha de Prótese , Sarcopenia/etiologia , Sarcopenia/prevenção & controle , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA