Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(2): 434-455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990982

RESUMO

Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.


Assuntos
Basidiomycota , Poluentes Ambientais , Lacase , Biotecnologia , Biomassa , Fungos
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012620

RESUMO

The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from Aspergillus spp. (LAsp) in residual corn cob and its application in the degradation of Remazol Brilliant Blue R (RBBR) dye. The highest yields in immobilized protein (75%) and residual activity (40%) were obtained at pH 7.0 and an enzyme concentration of 0.1 g.mL-1, whose expressed enzyme activity was 1854 U.kg-1. At a temperature of 60 °C, more than 90% of the initial activity present in the immobilized biocatalyst was maintained. The immobilized enzyme showed higher efficiency in the degradation (64%) of RBBR dye in 48 h, with improvement in the process in 72 h (75%). The new biocatalyst showed operational efficiency during three cycles, and a higher degradation rate than the free enzyme, making it a competitive biocatalyst and amenable to industrial applications.


Assuntos
Lacase , Zea mays , Antraquinonas/química , Corantes/química , Lacase/metabolismo , Zea mays/metabolismo
3.
Membranes (Basel) ; 12(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35323773

RESUMO

The presence of micropollutants in wastewater is one of the most significant environmental challenges. Particularly, pollutants such as pharmaceutical residues present high stability and resistance to conventional physicochemical and biological degradation processes. Thus, we aimed at immobilizing a laccase enzyme by two different methods: the first one was based on producing alginate-laccase microcapsules through a droplet-based microfluidic system; the second one was based on covalent binding of the laccase molecules on aluminum oxide (Al2O3) pellets. Immobilization efficiencies approached 92.18% and 98.22%, respectively. Laccase immobilized by the two different methods were packed into continuous flow microreactors to evaluate the degradation efficiency of acetaminophen present in artificial wastewater. After cyclic operation, enzyme losses were found to be up to 75 µg/mL and 66 µg/mL per operation cycle, with a maximum acetaminophen removal of 72% and 15% and a retention time of 30 min, for the laccase-alginate microcapsules and laccase-Al2O3 pellets, respectively. The superior catalytic performance of laccase-alginate microcapsules was attributed to their higher porosity, which enhances retention and, consequently, increased the chances for more substrate-enzyme interactions. Finally, phytotoxicity of the treated water was lower than that of the untreated wastewater, especially when using laccase immobilized in alginate microcapsules. Future work will be dedicated to elucidating the routes for scaling-up and optimizing the process to assure profitability.

4.
Fungal Biol ; 120(12): 1609-1622, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27890094

RESUMO

A Trametes versicolor laccase was functionally expressed on the membrane surface of Saccharomyces cerevisiae EBY100. Laccase expression was increased 6.57-fold by medium optimization and surpassed production by the native strain. Maximal laccase and biomass production reached 19 735 ± 1719 Ug-1 and 6.22 ± 0.53 gL-1 respectively, after 2 d of culture. Optimum oxidization of all substrates by laccase was observed at pH 3. Laccase showed high affinity towards substrates used with Km (mM) and Vmax (µmol min-1) values of 0.57 ± 0.0047 and 24.55 ± 0.64, 1.52 ± 0.52 and 9.25 ± 1.78, and 2.67 ± 0.12 and 11.26 ± 0.75, were reported for ABTS, 2, 6-DMP and GUA, respectively. EDTA and NaN3 displayed none competitive inhibition towards laccase activity. The optimum temperature for activity was 50 °C; however, the enzyme was stable over a wide range of temperatures (25-70 °C). The biologically immobilized laccase showed high reusability towards phenolic substrates and low reusability with non-phenolic substrates. High affinity for a diversity phenolic compounds and great ethanol tolerance substantiates this laccase/yeast biocatalyst potential for application in the production of bioethanol.


Assuntos
Técnicas de Visualização da Superfície Celular , Enzimas Imobilizadas/metabolismo , Expressão Gênica , Lacase/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Meios de Cultura/química , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Concentração de Íons de Hidrogênio , Lacase/química , Lacase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato , Temperatura , Trametes/enzimologia , Trametes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA