Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Gene ; 920: 148521, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703868

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory RNAs. Saccharomyces cerevisiae strains transcribe hundreds of lncRNAs. LncRNAs can regulate the expression of adjacent genes (cis-regulation) or distant genes from lncRNAs (trans-regulation). Here, we analyzed the potential global cis and trans-regulation of lncRNAs of yeast subjected to ethanol stress. For potential cis regulation, for BMA641-A and S288C strains, we observed that most lncRNA-neighbor gene pairs increased the expression at a certain point followed by a decrease, and vice versa. Based on the transcriptome profile and triple helix prediction between lncRNAs and promoters of coding genes, we observed nine different ways of potential trans regulation that work in a strain-specific manner. Our data provide an initial landscape of potential cis and trans regulation in yeast, which seems to be strain-specific.


Assuntos
Etanol , Regulação Fúngica da Expressão Gênica , RNA Longo não Codificante , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/genética , RNA Longo não Codificante/genética , Etanol/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Fúngico/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma
2.
Noncoding RNA ; 10(2)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668382

RESUMO

Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.

3.
BMC Genomics ; 25(1): 295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509455

RESUMO

BACKGROUND: Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS: In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS: We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.


Assuntos
RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meiose , Espermatogênese/genética , Testículo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos/genética
4.
Environ Int ; 184: 108462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335627

RESUMO

While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid ß, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Estudos Prospectivos , Biomarcadores
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396700

RESUMO

Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.


Assuntos
Adipogenia , RNA Longo não Codificante , Humanos , Adipogenia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Polirribossomos/metabolismo
6.
Noncoding RNA ; 10(1)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38392967

RESUMO

Extracellular vesicles (EVs) are defined as subcellular structures limited by a bilayer lipid membrane that function as important intercellular communication by transporting active biomolecules, such as proteins, amino acids, metabolites, and nucleic acids, including long non-coding RNAs (lncRNAs). These cargos can effectively be delivered to target cells and induce a highly variable response. LncRNAs are functional RNAs composed of at least 200 nucleotides that do not code for proteins. Nowadays, lncRNAs and circRNAs are known to play crucial roles in many biological processes, including a plethora of diseases including cancer. Growing evidence shows an active presence of lnc- and circRNAs in EVs, generating downstream responses that ultimately affect cancer progression by many mechanisms, including angiogenesis. Moreover, many studies have revealed that some tumor cells promote angiogenesis by secreting EVs, which endothelial cells can take up to induce new vessel formation. In this review, we aim to summarize the bioactive roles of EVs with lnc- and circRNAs as cargo and their effect on cancer angiogenesis. Also, we discuss future clinical strategies for cancer treatment based on current knowledge of circ- and lncRNA-EVs.

7.
Genes (Basel) ; 15(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275604

RESUMO

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.


Assuntos
MicroRNAs , RNA Longo não Codificante , Insuficiência Renal Crônica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fibrose
8.
Heliyon ; 10(1): e23695, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205306

RESUMO

Epigenetic variation affects gene expression without altering the underlying DNA sequence of genes controlling ecologically relevant phenotypes through different mechanisms, one of which is long non-coding RNAs (lncRNAs). This study identified and evaluated the gene expression of lncRNAs in the gill and mantle tissues of Mytilus chilensis individuals from two ecologically different sites: Cochamó (41°S) and Yaldad (43°S), southern Chile, both impacted by climatic-related conditions and by mussel farming given their use as seedbeds. Sequences identified as lncRNAs exhibited tissue-specific differences, mapping to 3.54 % of the gill transcriptome and 1.96 % of the mantle transcriptome, representing an average of 2.76 % of the whole transcriptome. Using a high fold change value (≥|100|), we identified 43 and 47 differentially expressed lncRNAs (DE-lncRNAs) in the gill and mantle tissue of individuals sampled from Cochamó and 21 and 17 in the gill and mantle tissue of individuals sampled from Yaldad. Location-specific DE-lncRNAs were also detected in Cochamó (65) and Yaldad (94) samples. Via analysis of the differential expression of neighboring protein-coding genes, we identified enriched GO terms related to metabolic, genetic, and environmental information processing and immune system functions, reflecting how the impact of local ecological conditions may influence the M. chilensis (epi)genome expression. These DE-lncRNAs represent complementary biomarkers to DNA sequence variation for maintaining adaptive differences and phenotypic plasticity to cope with natural and human-driven perturbations.

9.
Diabet Med ; 41(2): e15244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846767

RESUMO

AIMS: We evaluated the involvement of lncRNAs in the development of pathologies associated with chronic hyperglycaemia in rat models in a model of type 1, type 2 and gestational diabetes. METHODS: Reports were searched in Dialnet, Scielo, HINARI, Springer, ClinicalKey, OTseeker, PubMed and different grey literature databases with any restrictions. Bibliography databases will be searched from their inception to December 2022. RESULTS: Thirty-seven studies met our criteria, and they had the following characteristics: original experimental studies on diabetes, the lncRNAs were extracted or measured from tissues of specific areas and the results were expressed in terms of standard measures by RT-PCR. In most studies, both primary and secondary outcomes were mentioned. On the other hand, we found a total of nine diabetic complications, being retinopathy, nephropathy and neuropathy the most representatives. Additionally, it was found that MALAT1, H19, NEAT1 and TUG1 are the most studied lncRNAs about these complications in rats. On the other hand, the lncRNAs with the highest rate of change were MSTRG.1662 (17.85; 13.78, 21.93), ENSRNOT00000093120_Aox3 (7.13; 5.95, 8.31) and NONRATG013497.2 (-5.55; -7.18, -3.93). CONCLUSIONS: This review found a significant involvement of lncRNAs in the progression of pathologies associated with chronic hyperglycaemia in rat models, and further studies are needed to establish their potential as biomarkers and therapeutic targets for diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , RNA Longo não Codificante , Animais , Ratos , RNA Longo não Codificante/genética , Hiperglicemia/genética , Biomarcadores
10.
Planta ; 259(2): 32, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153530

RESUMO

MAIN CONCLUSION: CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/genética , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , RNA não Traduzido/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA