Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028484

RESUMO

Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.

2.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931751

RESUMO

This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain-computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Aprendizado Profundo , Eletroencefalografia , Redes Neurais de Computação , Eletroencefalografia/métodos , Humanos , Processamento de Sinais Assistido por Computador
3.
ISA Trans ; 124: 41-56, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33422330

RESUMO

In this paper, Transfer Learning is used in LSTM networks to forecast new COVID cases and deaths. Models trained in data from early COVID infected countries like Italy and the United States are used to forecast the spread in other countries. Single and multistep forecasting is performed from these models. The results from these models are tested with data from Germany, France, Brazil, India, and Nepal to check the validity of the method. The obtained forecasts are promising and can be helpful for policymakers coping with the threats of COVID-19.


Assuntos
COVID-19 , Aprendizado Profundo , Brasil , COVID-19/epidemiologia , Previsões , Humanos , Índia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA