Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 234: 320-325, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30634124

RESUMO

The effect and the response of several trace elements (TE) addition to the anaerobic degradation of key compounds of lignocellulosic biomass were evaluated. Lignin, cellulose and xylose were selected as principal compounds of lignocellulosic biomass. Lignin degradation was only improved by the addition of 1000 mg Fe/L, which allowed an improvement on the methane yield coefficient of 28% compared to control. SEM images from an abiotic assay showed that this effect is more likely related with a chemical effect induced by the Fe solution, instead of an enzymatic response. Pre-treatments focused on breaking the recalcitrant structure of the lignin could be more promising than TE addition for rich lignin-content substrates. Unlike to the response observed with lignin, cellulose showed a clear effect of the TE addition on methane production rate, indicating a higher preponderance of the enzymatic activity compared to the lignin biomethanization. Experiments with xylose resulted in a strong accumulation of volatile fatty acids. TE addition should be adapted to the substrate composition given the different response of each lignocellulosic compound to the different TE addition.


Assuntos
Biocombustíveis , Oligoelementos , Anaerobiose , Biomassa , Hidrólise , Lignina , Metano
2.
Environ Technol ; 39(14): 1776-1785, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28592217

RESUMO

Community on-site separation of wastewater is a treatment approach that leads to more efficient processes. Black water has high organic matter content and can be a suitable feedstock for anaerobic treatment systems. Biological methane production (BMP) tests were conducted using Plackett-Burman design to screen the effects of adding Fe, Ni, Cu, Co, Mn, Ba and Se, with simulated black water (SBW) as the substrate. In the inoculum, most metals were found mainly in the organic matter/sulfide and residual fractions except for Mn, which was present at 12.3% in the bioavailable fractions (exchangeable and carbonates), and Ba, which was evenly distributed among all the fractions. Ba had a significant negative effect on methane production and Mn addition enhanced the toxic effect. A specific methanogenic activity (SMA) between 18% and 27% lower than the control, was predicted at a total Ba concentration of approximately 1000-1200 mg L-1. Similar SMA was predicted at Ba concentration between 400 and 600 mg L-1 when 0.55 mg L-1 of Mn is added. Se and Cu additions demonstrate the potential to improve the methane production from SBW. The SMA was predicted to reach 12 mLCH4 gCOD-1 d-1 when Cu and Se are supplied at total concentrations of 3.0 mg L-1 and 0.98 mg L-1, respectively.


Assuntos
Oligoelementos/análise , Águas Residuárias , Anaerobiose , Metais , Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA