Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Elife ; 122024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163103

RESUMO

Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.


Assuntos
Plaquetas , Diferenciação Celular , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Remielinização/fisiologia , Camundongos , Plaquetas/fisiologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Modelos Animais de Doenças , Oligodendroglia/fisiologia , Feminino
2.
Front Cell Infect Microbiol ; 14: 1369226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086605

RESUMO

Objective: The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods: Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results: Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion: The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.


Assuntos
Metilação de DNA , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Porphyromonas gingivalis , Animais , Porphyromonas gingivalis/genética , Camundongos , Periodontite/microbiologia , Epigênese Genética , Doenças Periodontais/microbiologia , Suscetibilidade a Doenças , Infecções por Bacteroidaceae/microbiologia , Epigenoma
3.
Pulm Pharmacol Ther ; 86: 102316, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069252

RESUMO

Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases. This review focuses on the key immunological pathways underlying bacterial ALI and the exploration of mouse models as tools for its induction. These models serve as indispensable platforms for unraveling the inflammatory cascades and biological responses inherent to ALI, while also facilitating the evaluation of novel therapeutic agents. However, their utility is not without challenges, mainly due to the stringent biosafety protocols required by the diverse bacterial virulence profiles. Simple and reproducible models of pulmonary bacterial infection are currently available, including intratracheal, intranasal, pleural and, intraperitoneal approaches. These models use endotoxins such as commercially available lipopolysaccharide (LPS) or live pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus pneumoniae, all of which are implicated in the pathogenesis of ALI. Combining murine models of bacterial lung infection with in-depth studies of the underlying immunological mechanisms is a cornerstone in advancing the therapeutic landscape for acute bacterial lung injury.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Animais , Lesão Pulmonar Aguda/microbiologia , Camundongos , Humanos , Índice de Gravidade de Doença
4.
Nutrients ; 16(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999749

RESUMO

Undernutrition (UN) increases child vulnerability to illness and mortality. Caused by a low amount and/or poor quality of food intake, it impacts physical, cognitive, and social development. Modern types of food consumption have given highly processed food a higher cultural value compared to minimally processed food. OBJECTIVE: The objective of this study was to evaluate the effect on growth, metabolism, physical activity (PA), memory, inflammation, and toxicity of an enriched black corn chip (BC) made with endemic ingredients on post-weaned UN mice. METHODS: A chip was made with a mixture of black corn, fava beans, amaranth, and nopal cactus. To probe the effects of UN, UN was induced in 3wo post-weaned male C57Bl/6j mice through a low-protein diet (LPD-50% of the regular requirement of protein) for 3w. Then, the BC was introduced to the animals' diet (17%) for 5w; murinometric parameters were measured, as were postprandial glucose response, PA, and short-term memory. Histological analysis was conducted on the liver and kidneys to measure toxicity. Gene expression related to energy balance, thermogenesis, and inflammation was measured in adipose and hypothalamic tissues. RESULTS: Treatment with the BC significantly improved mouse growth, even with a low protein intake, as evidenced by a significant increase in body weight, tail length, cerebral growth, memory improvement, physical activation, normalized energy expenditure (thermogenesis), and orexigenic peptides (AGRP and NPY). It decreased anorexigenic peptides (POMC), and there was no tissue toxicity. CONCLUSIONS: BC treatment, even with persistent low protein intake, is a promising strategy against UN, as it showed efficacy in correcting growth deficiency, cognitive impairment, and metabolic problems linked to treatment by adjusting energy expenditure, which led to the promotion of energy intake and regulation of thermogenesis, all by using low-cost, accessible, and endemic ingredients.


Assuntos
Modelos Animais de Doenças , Desnutrição , Camundongos Endogâmicos C57BL , Zea mays , Animais , Masculino , Camundongos , Metabolismo Energético , Dieta com Restrição de Proteínas , Fígado/metabolismo , Alimentos Fortificados , Termogênese
5.
Elife ; 122024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922679

RESUMO

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.


Assuntos
Movimento Celular , Células Dendríticas , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Monócitos , Mycobacterium tuberculosis , Tuberculose , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Camundongos , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Feminino
6.
Genome Med ; 16(1): 75, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822427

RESUMO

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Assuntos
Hipopituitarismo , Camundongos Knockout , Hipófise , Hipopituitarismo/genética , Animais , Humanos , Hipófise/metabolismo , Hipófise/anormalidades , Hipófise/patologia , Camundongos , Fenótipo , Feminino , Masculino , Modelos Animais de Doenças , Sequenciamento do Exoma , Displasia Septo-Óptica/genética
7.
Braz J Microbiol ; 55(3): 2501-2509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38789906

RESUMO

This study aims to investigate the anti-obesity properties of lactic acid bacteria (LAB) isolated from fermented dairy products such as "Airag" and "Khoormog" in Mongolia. These traditional dairy products are widely used in Mongolia and believe in having potential probiotic, anti-diabetes, anti-cancer, and anti-tuberculosis properties and are made from unheated two-humped camel milk and mare milk, respectively. We chose three LAB strains based on their probiotic characteristics, including tolerance of gastric and bile acids. Then we checked the anti-obesity activity of probiotic strains in vivo. An animal model was evaluated in twenty male C57BL/6J mice by inducing obesity with a high-fat diet (HFD), which was divided into five groups: regular diet group (Negative control), HFD group (Positive control), HFD with Lacticaseibacillus paracasei X-1 (X-1), Lacticaseibacillus paracasei X-17 (X-17), and Limosilactobacillus fermentum BM-325 (BM-325). For six weeks, 5 × 109 colony-forming units (CFU) of bacteria were given orally to the LAB-fed groups. Fasting blood glucose (FBG), lipid profiles, organ index, and organ morphology were all measured. The probiotic strains suppressed growth in adipose cell volume, stabilized FBG, reduced liver cell degeneration, and slowed HFD-induced body weight gain. The results suggest that some strains increase general metabolism while lowering body weight.


Assuntos
Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Probióticos , Animais , Probióticos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Obesidade/microbiologia , Masculino , Camundongos , Mongólia , Fármacos Antiobesidade/farmacologia , Modelos Animais de Doenças , Lactobacillus/isolamento & purificação , Produtos Fermentados do Leite/microbiologia , Camelus
8.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785987

RESUMO

Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus, and it is associated with alterations in the expression of hormone receptors and inflammation. Estetrol (E4) is a weak estrogen that recently has been approved for contraception. We evaluated the effect of E4 on the growth of endometriotic-like lesions and the expression of TNF-α, estrogen receptors (ERs), and progesterone receptors (PRs) in an in vivo murine model. Endometriosis was induced surgically in female C57BL/6 mice. E4 was delivered via Alzet pump (3 mg/kg/day) from the 15th postoperative day for 4 weeks. E4 significantly reduced the volume (p < 0.001) and weight (p < 0.05) of ectopic lesions. Histologically, E4 did not affect cell proliferation (PCNA immunohistochemistry) but it did increase cell apoptosis (TUNEL assay) (p < 0.05). Furthermore, it modulated oxidative stress (SOD, CAT, and GPX activity, p < 0.05) and increased lipid peroxidation (TBARS/MDA, p < 0.01). Molecular analysis showed mRNA (RT-qPCR) and protein (ELISA) expression of TNF-α decreased (p < 0.05) and mRNA expression of Esr2 reduced (p < 0.05), in contrast with the increased expression of Esr1 (p < 0.01) and Pgr (p < 0.05). The present study demonstrates for the first time that E4 limited the development and progression of endometriosis in vivo.


Assuntos
Modelos Animais de Doenças , Endometriose , Estetrol , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa , Animais , Endometriose/metabolismo , Endometriose/patologia , Endometriose/tratamento farmacológico , Feminino , Camundongos , Estetrol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética
9.
JBRA Assist Reprod ; 28(2): 276-283, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775323

RESUMO

OBJECTIVE: Cryopreservation has some adverse effects on embryos including cell metabolism reduction, mitochondria and plasma membrane damage, excess production of 'Reactive Oxygen Species' and damage to DNA. In the present study. In this study we assessed the effect of coenzyme Q10 as an exogenous antioxidant on mouse embryos following cryopreservation. METHODS: We collected mice embryos at the morula stage from uterine horns on the third day of gestation. The morulae were divided into 9 groups (1 control, 2 vehicles and 6 experimental), then vitrified. The culture and/or vitrification media of the experimental groups were supplemented by 10 or 30 µM of CoQ10. After one week, the embryos were warmed and then cultured. After 48 hours of embryo culture, the blastocyst rate, total cell number, viability; and after 72 hours of embryo culture, we assessed the hatching rate. RESULTS: Blastocyst rate and hatching rate were significantly reduced in the groups containing 30 µM CoQ10 supplemented culture media compared to other groups (p<0.05). The hatching rate in the groups containing 10 µM CoQ10 supplemented in both culture and vitrification media was significantly higher than in the other groups (p<0.05). In groups containing 10 µM CoQ10 supplemented culture media, the viability was higher than that in the other groups (p<0.05). CONCLUSIONS: It seems that CoQ10 in a dose-dependent manner is able to improve hatching rate and viability following cryopreservation through its antioxidant and anti-apoptotic properties, and through the production of ATP.


Assuntos
Criopreservação , Ubiquinona , Animais , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , Feminino , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Vitrificação/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Antioxidantes/farmacologia , Gravidez
10.
Biol Res ; 57(1): 26, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735981

RESUMO

BACKGROUND: Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo-/- mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo-/- mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies. RESULTS: Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo-/- mice treated with sub-optimal and optimal ascorbate levels. CONCLUSIONS: Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.


Assuntos
Ácido Ascórbico , Fígado , Proteômica , Animais , Ácido Ascórbico/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Feminino , Masculino , Camundongos , L-Gulonolactona Oxidase/genética , L-Gulonolactona Oxidase/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Análise de Componente Principal , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA