Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498426

RESUMO

Most plants produce floral nectar to attract pollinators that impact pollination and seed production; some of them also secrete extrafloral nectar harvested by insects that may influence the plant reproductive success. The aim of this study was to analyze the effects of excluding pollinators and/or ants on the per-plant reproductive success in two species (Dyckia floribunda Griseb. and Dyckia longipetala Baker, Bromeliaceae) that produce floral and extrafloral nectar. The hypothesis states that both ecological processes (pollination and ant defense) involving nectar-mediated animal-plant interactions are beneficial for plant reproductive success. We expected the highest decrease in the plant fruit and seed sets when the pollinators and ants were excluded, and a moderate decrease when solely ants were excluded, compared to the control plants (those exposed to pollinators and ants). In addition, a lower natural reproductive success was also expected in the self-incompatible D. longipetala than in the self-compatible D. floribunda, as the former totally depends on animal pollination for seed production. D. floribunda and D. longipetala presented similar trends in the response variables, and the expected results for the experimental treatments were observed, with some variations between species and among populations. The ecological function of nectar is important because these two plant species depend on pollinators to produce seeds and on ants to defend flowers from the endophytic larvae of Lepidoptera. The study of multispecies interactions through mechanistic experiments could be necessary to clarify the specific effects of different animals on plant reproductive success.

2.
J Exp Bot ; 74(15): 4613-4627, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37115640

RESUMO

Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.


Assuntos
Formigas , Animais , Formigas/fisiologia , Néctar de Plantas , Simbiose , Herbivoria/fisiologia , Folhas de Planta/fisiologia , Plantas
3.
Plant Biol (Stuttg) ; 25(1): 187-197, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35751486

RESUMO

Biotic interactions are said to be more specialized in the tropics, and this was also proposed for the pollination systems of columnar cacti from North America. However, this has not yet been tested for a wider set of cactus species. Here, we use the available information about pollination in the Cactaceae to explore the geographic patterns of this mutualistic interaction, and test if there is a latitudinal gradient in its degree of specialization. We performed a bibliographic search of all publications on the pollination of cacti species and summarized the information to build a database. We used generalized linear models to evaluate if the degree of specialization in cacti pollination systems is affected by latitude, using two different measures: the number of pollinator guilds (functional specialization) and the number of pollinator species (ecological specialization). Our database contained information about the pollination of 148 species. The most frequent pollinator guilds were bees, birds, moths and bats. There was no apparent effect of latitude on the number of guilds that pollinate a cactus species. However, latitude had a small but significant effect on the number of pollinator species that service a given cactus species. Bees are found as pollinators of most cactus species, along a wide latitudinal gradient. Bat and bird pollination is more common in the tropics than in the extra-tropics. The available information suggests that cacti pollination systems are slightly more ecologically specialized in the tropics, but it does not support any trend with regard to functional specialization.


Assuntos
Abelhas , Aves , Polinização , Animais , Cactaceae , Quirópteros , Flores
4.
Ecology ; 103(1): e03547, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618911

RESUMO

Understanding the impacts of global change on ecological communities is a major challenge in modern ecology. The gain or loss of particular species and the disruption of key interactions are both consequences and drivers of global change that can lead to the disassembly of ecological networks. We examined whether the disruption of a hummingbird-mistletoe-marsupial mutualism by the invasion of non-native species can have cascading effects on both pollination and seed dispersal networks in the temperate forest of Patagonia, Argentina. We focused on network motifs, subnetworks composed of a small number of species exhibiting particular patterns of interaction, to examine the structure and diversity of mutualistic networks. We found that the hummingbird-mistletoe-marsupial mutualism plays a critical role in the community by increasing the complexity of pollination and seed dispersal networks through supporting a high diversity of interactions. Moreover, we found that the disruption of this tripartite mutualism by non-native ungulates resulted in diverse indirect effects that led to less complex pollination and seed dispersal networks. Our results demonstrate that the gains and losses of particular species and the alteration of key interactions can lead to cascading effects in the community through the disassembly of mutualistic networks.


Assuntos
Polinização , Dispersão de Sementes , Animais , Aves , Ecossistema , Simbiose
5.
PeerJ ; 6: e4830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844980

RESUMO

The monoamines serotonin and dopamine are important neuromodulators present in the central nervous system, known to be active regulators of social behaviour in fish as in other vertebrates. Our aim was to investigate the region-specific brain monoaminergic differences arising when individual cleaners face a client (mutualistic context) compared to when they are introduced to another conspecific (conspecific context), and to understand the relevance of visual assessment compared to the impact of physical contact with any partner. We demonstrated that serotoninergic activity at the diencephalon responds mostly to the absence of physical contact with clients whereas cerebellar dopaminergic activity responds to actual cleaning engagement. We provide first insights on the brain's monoaminergic (region-specific) response variations, involved in the expression of cleaner fishes' mutualistic and conspecific behaviour. These results contribute to a better understanding of the monoaminergic activity in accordance to different socio-behavioural contexts.

6.
Ann Bot ; 120(5): 765-774, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28673028

RESUMO

Background and Aims: The most widespread form of protective mutualisms is represented by plants bearing extrafloral nectaries (EFNs) that attract ants and other arthropods for indirect defence. Another, but less common, form of sugary secretion for indirect defence occurs in galls induced by cynipid wasps. Until now, such galls have been reported only for cynipid wasps that infest oak trees in the northern hemisphere. This study provides the first evidence of galls that exude sugary secretions in the southern hemisphere and asks whether they can be considered as analogues of plants' EFNs. Methods: The ecology and anatomy of galls and the chemical composition of the secretion were investigated in north-western Argentina, in natural populations of the host trees Prosopis chilensis and P. flexuosa . To examine whether ants protect the galls from natural enemies, ant exclusion experiments were conducted in the field. Key Results: The galls produce large amounts of sucrose-rich, nectar-like secretions. No typical nectary and sub-nectary parenchymatic tissues or secretory trichomes can be observed; instead there is a dense vascularization with phloem elements reaching the gall periphery. At least six species of ants, but also vespid wasps, Diptera and Coleoptera, consumed the gall secretions. The ant exclusion experiment showed that when ants tended galls, no differences were found in the rate of successful emergence of gall wasps or in the rate of parasitism and inquiline infestation compared with ant-excluded galls. Conclusions: The gall sugary secretion is not analogous to extrafloral nectar because no nectar-producing structure is associated with it, but is functionally equivalent to arthropod honeydew because it provides indirect defence to the plant parasite. As in other facultative mutualisms mediated by sugary secretions, the gall secretion triggers a complex multispecies interaction, in which the outcome of individual pair-wise interactions depends on the ecological context in which they take place.


Assuntos
Formigas/fisiologia , Oviposição , Néctar de Plantas/metabolismo , Prosopis/fisiologia , Simbiose , Vespas/fisiologia , Animais , Argentina , Néctar de Plantas/análise , Prosopis/química , Açúcares/metabolismo , Árvores/química , Árvores/fisiologia
7.
Ecology ; 97(7): 1819-1831, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859154

RESUMO

Regenerated forests now compose over half of the world's tropical forest cover and are increasingly important as providers of ecosystem services, freshwater, and biodiversity conservation. Much of the value and functionality of regenerating forests depends on the plant diversity they contain. Tropical forest diversity is strongly shaped by mutualistic interactions between plants and fruit-eating animals (frugivores) that disperse seeds. Here we show how seed dispersal by birds can influence the speed and diversity of early successional forests in Puerto Rico. For two years, we monitored the monthly fruit production of bird-dispersed plants on a fragmented landscape, and measured seed dispersal activity of birds and plant establishment in experimental plots located in deforested areas. Two predominantly omnivorous bird species, the Northern Mockingbird (Mimus polyglottos) and the Gray Kingbird (Tyrannus dominicensis), proved critical for speeding up the establishment of woody plants and increasing the species richness and diversity of the seed rain in deforested areas. Seed dispersal by these generalists increased the odds for rare plant species to disperse and establish in experimental forest-regeneration plots. Results indicate that birds that mix fruit and insects in their diets and actively forage across open and forested habitats can play keystone roles in the regeneration of mutualistic plant-animal communities. Furthermore, our analyses reveal that rare-biased (antiapostatic) frugivory and seed dispersal is the mechanism responsible for increasing plant diversity in the early-regenerating community.


Assuntos
Biodiversidade , Aves/fisiologia , Florestas , Dispersão de Sementes , Animais , Ecossistema , Plantas , Porto Rico , Sementes , Árvores
8.
Rev. biol. trop ; 63(3): 647-658, jul.-sep. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-778074

RESUMO

Orchid bees are important keystone pollinators from the Neotropics. With the aim to study the relationships between orchid bees and their nectar and aromatic host species, we made systematic samplings of males across two conservation areas in the biogeographic Chocó Region of Colombia. We used chemical baits to collect 352 male bees during five months. The pollen attached to their bodies was extracted for palynological identification and to estimate interaction networks. The euglossine community consisted of at least 22 species including Eg. maculilabris, Eg. orellana, Eg. championiand Eg. ignita.The male bees were associated with 84 plants but depended on a small group of them (Peperomiaspp. and Anthuriumspp, as well as species of Solanaceae, Ericaceae and Malpighiaceae) which were widely distributed across the altitudinal gradient, and were available through the year. The resulting interaction networks revealed a typical nested pattern usually found in plant-pollinator interactions, with several rare bee and plant species interaction with a small group of generalist bees and plant species. Albeit, we found variation within networks related to species composition. Such variation may be a consequence of specific differences in plant flowering phenology.


Las abejas de las orquídeas son uno de los principales grupos de polinizadores con distribución exclusivamente Neotropical. Con el fin de documentar las relaciones de estas abejas con sus plantas fuente de néctar y sustancias aromáticas, realizamos muestreos sistemáticos de 352 machos durante cinco meses usando cebos químicos para atraerlos en dos áreas de conservación en el Chocó biogeográfico. Se extrajo el polen adherido al cuerpo de los especímenes recolectados para identificación palinológica de las especies vegetales visitadas por la comunidad y posterior análisis de redes de interacciones. Encontramos que la comunidad de euglossinos está conformada por al menos 22 especies de abejas. Dentro de la comunidad fueron más comunes: Eg. maculilabris, Eg. orellana, Eg. championiy Eg. ignita.Las especies de abejas se relacionan con no menos de 84 especies de plantas pero dependen más frecuentemente de un pequeño grupo de especies vegetales ampliamente distribuidas en el gradiente altitudinal mues-treado y que se encuentran disponibles durante gran parte del año. Dentro de este pequeño grupo destacan especies pertenecientes a los géneros Anthuriumy Peperomiay a las familias Solanaceae, Ericaceae y Malpighiaceae. Las redes de interacciones resultantes muestran un patrón anidado en el que muchas especies de abejas o plantas raras interac-túan con un pequeño grupo de especies de abejas o plantas generalistas. También encontramos variaciones espaciales y temporales en las redes en cuanto a la composición de especies y la manera como se distribuyen las interacciones. Estas variaciones estarían determinadas por las diferencias en la fenología de las plantas y en las condiciones climáticas entre los sitios muestreados que se encuentran muy cercanos entre sí.


Assuntos
Animais , Masculino , Abelhas/fisiologia , Ecossistema , Orchidaceae/classificação , Polinização , Abelhas/classificação , Colômbia , Densidade Demográfica , Floresta Úmida
9.
AoB Plants ; 62014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381258

RESUMO

Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant-plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities.

10.
Commun Integr Biol ; 7(5)2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26843901

RESUMO

In defensive ant-plant interactions myrmecophytic plants express reduced chemical defense in their leaves to protect themselves from pathogens, and it seems that mutualistic partners are required to make up for this lack of defensive function. Previously, we reported that mutualistic ants confer plants of Acacia hindsii protection from pathogens, and that the protection is given by the ant-associated bacteria. Here, we examined whether foliar endophytic fungi may potentially act as a new partner, in addition to mutualistic ants and their bacteria inhabitants, involved in the protection from pathogens in myrmecophytic Acacia plants. Fungal endophytes were isolated from the asymptomatic leaves of A. hindsii plants for further molecular identification of 18S rRNA gene. Inhibitory effects of fungal endophytes were tested against Pseudomonas plant pathogens. Our findings support a potential role of fungal endophytes in pathogen the protection mechanisms against pathogens in myrmecophytic plants and provide the evidence of novel fungal endophytes capable of biosynthesizing bioactive metabolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA