Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int. j. morphol ; 42(2): 341-347, abr. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1558136

RESUMO

SUMMARY: The different embryological origins of striated muscle tissue make it an interesting tissue but at the same time difficult to understand, this is how the musculature of the face comes from the first pharyngeal arch, on the other hand. The muscles of the tongue derive from the somites. The muscles of the larynx come from the pharyngeal arches. The muscles of the spine come from the medial or internal myotome of the somite, while the muscles of the limbs and body wall come from the external myotome. The cardiac musculature originates from the lateral splanchnic mesoderm. In this work, the development of myoblasts in human, mouse and chicken fetuses was studied in the facial region, tongue, and spine, limbs, body wall and cardiac muscles using histological histochemical techniques and immunohistochemical technique. The objective of the work is to compare the histogenesis of striated muscle (skeletal, visceral and cardiac), indicating the differences in origin, evolution of the morphological characteristics in each of them and the signaling routes that are involved in its development.


Los distintos origenes embriológicos del tejido muscular estriado lo hace un tejido interesante, pero a la vez difícil de entender, es así como la musculatura de la cara proviene del primer arco faríngeo, en cambio, la musculatura de la lengua deriva de los somitos. La musculatura de la laringe proviene de los arcos faríngeos. La musculatura de la columna vertebral proviene del miotomo medial o interno del somito, en cambio la musculatura de los miembros y pared del cuerpo proviene del miotomo externo. La musculatura cardiaca se origina del mesoderma lateral esplácnico. En este trabajo se estudió el desarrollo de mioblastos en fetos humanos, de ratón y pollo, en la región facial, lengua, columna vertebral, miembros, pared del cuerpo y musculatura cardíaca mediante técnicas histológicas histoquímicas y técnica inmunohistoquímica. El objetivo del trabajo fue comparar la histogénesis del músculo estriado (esquelético, visceral y cardíaco), indicando las diferencias de origen, evolución de las características morfológicas en cada una de ellas y las rutas de señalización que se ven involucradas en el desarrollo del mismo.


Assuntos
Animais , Desenvolvimento Embrionário , Músculo Estriado/embriologia , Galinhas
2.
Dev Dyn ; 244(8): 973-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26010523

RESUMO

BACKGROUND: In most vertebrates, the segmentation of the paraxial mesoderm involves the formation of metameric units called somites through a mesenchymal-epithelial transition. However, this process is different in Xenopus laevis because it does not form an epithelial somite. Xenopus somitogenesis is characterized by a complex cells rearrangement that requires the coordinated regulation of cell shape, adhesion, and motility. The molecular mechanisms that control these cell behaviors underlying somite formation are little known. Although the Paraxis has been implicated in the epithelialization of somite in chick and mouse, its role in Xenopus somite morphogenesis has not been determined. RESULTS: Using a morpholino and hormone-inducible construction approaches, we showed that both gain and loss of function of paraxis affect somite elongation, rotation and alignment, causing a severe disorganization of somitic tissue. We further found that depletion or overexpression of paraxis in the somite led to the downregulation or upregulation, respectively, of cell adhesion expression markers. Finally, we demonstrated that paraxis is necessary for the proper expression of myotomal and sclerotomal differentiation markers. CONCLUSIONS: Our results demonstrate that paraxis regulates the cell rearrangements that take place during the somitogenesis of Xenopus by regulating cell adhesion. Furthermore, paraxis is also required for somite differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Somitos/embriologia , Somitos/metabolismo , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA