Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892021

RESUMO

Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug's absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water-gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water-gas interface. Concurrently, we observed that at the water-gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug's bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug's translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.


Assuntos
Dióxido de Carbono , Modelos Animais de Doenças , Hipotireoidismo , Tiroxina , Água , Animais , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Camundongos , Dióxido de Carbono/química , Água/química , Camundongos Endogâmicos C57BL , Administração Oral , Nanopartículas/química , Portadores de Fármacos/química
2.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063756

RESUMO

Worldwide, hypoxia-related conditions, including cancer, COVID-19, and neuro-degenerative diseases, often lead to multi-organ failure and significant mortality. Oxygen, crucial for cellular function, becomes scarce as levels drop below 10 mmHg (<2% O2), triggering mitochondrial dysregulation and activating hypoxia-induced factors (HiFs). Herein, oxygen nanobubbles (OnB), an emerging versatile oxygen delivery platform, offer a novel approach to address hypoxia-related pathologies. This review explores OnB oxygen delivery strategies and systems, including diffusion, ultrasound, photodynamic, and pH-responsive nanobubbles. It delves into the nanoscale mechanisms of OnB, elucidating their role in mitochondrial metabolism (TFAM, PGC1alpha), hypoxic responses (HiF-1alpha), and their interplay in chronic pathologies including cancer and neurodegenerative disorders, amongst others. By understanding these dynamics and underlying mechanisms, this article aims to contribute to our accruing knowledge of OnB and the developing potential in ameliorating hypoxia- and metabolic stress-related conditions and fostering innovative therapies.

3.
J Fungi (Basel) ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623628

RESUMO

The global environmental issue of arsenic (As) contamination in drinking water is a significant problem that requires attention. Therefore, the aim of this research was to address the application of a sustainable methodology for arsenic removal through mycoremediation aerated with micro-nanobubbles (MNBs), leading to bioscorodite (FeAsO4·2H2O) generation. To achieve this, the fungus Trichoderma atroviride was cultivated in a medium amended with 1 g/L of As(III) and 8.5 g/L of Fe(II) salts at 28 °C for 5 days in a tubular reactor equipped with an air MNBs diffuser (TR-MNBs). A control was performed using shaking flasks (SF) at 120 rpm. A reaction was conducted at 92 °C for 32 h for bioscorodite synthesis, followed by further characterization of crystals through Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analyses. At the end of the fungal growth in the TR-MNBs, the pH decreased to 2.7-3.0, and the oxidation-reduction potential (ORP) reached a value of 306 mV at 5 days. Arsenic decreased by 70%, attributed to possible adsorption through rapid complexation of oxidized As(V) with the exchangeable ferrihydrite ((Fe(III))4-5(OH,O)12), sites, and the fungal biomass. This mineral might be produced under oxidizing and acidic conditions, with a high iron concentration (As:Fe molar ratio = 0.14). The crystals produced in the reaction using the TR-MNBs culture broth and characterized by SEM, XRD, and FTIR revealed the morphology, pattern, and As-O-Fe vibration bands typical of bioscorodite and römerite (Fe(II)(Fe(III))2(SO4)4·14H2O). Arsenic reduction in SF was 30%, with slight characteristics of bioscorodite. Consequently, further research should include integrating the TR-MNBs system into a pilot plant for arsenic removal from contaminated water.

4.
Heliyon ; 9(4): e15500, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089325

RESUMO

Around 10-15% of COVID-19 patients affected by the Delta and the Omicron variants exhibit acute respiratory insufficiency and require intensive care unit admission to receive advanced respiratory support. However, the current ventilation methods display several limitations, including lung injury, dysphagia, respiratory muscle atrophy, and hemorrhage. Furthermore, most of the ventilatory techniques currently offered require highly trained professionals and oxygen cylinders, which may attain short supply owing to the high demand and misuse. Therefore, the search for new alternatives for oxygen therapeutics has become extremely important for maintaining gas exchange in patients affected by COVID-19. This review highlights and suggest new alternatives based on micro and nanostructures capable of supplying oxygen and/or enabling hematosis during moderate or acute COVID-19 cases.

5.
Acta Vet. Brasilica ; 17(2): 91-98, 2023. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1513109

RESUMO

The objective of this work was to evaluate the use of an ultrafine bubble generator of own manufacture for oxygenation of Nile tilapia (Oreochromis niloticus) breeding tanks in a recirculating water system. The research was divided into two steps: 1) oxygen saturation test; 2) application of ultrafine bubble production technology for the breeding of Nile tilapia. In the first step, the water of a 2.0 m3 test tank was completely deoxygenated and the ultrafine bubble generator was turned on for 60 min. In the second step, the generator was connected to the water recirculating system for breeding of Nile tilapia to compare the overall performance of this system with other under conventional aeration system. The ultrafine bubble generator could reach 100% oxygen saturation in the test tank (27.8 °C) in approximately 21 min and, at the end of 60 min, the concentration was 21.8 mg L-1 (277.52% saturation). The results showed significant difference (p<0.05) between the mean dissolved oxygen concentration in the treatment with ultrafine bubbles (9.80 ±3.68 mg L-1) and the treatment with conventional aeration (3.47 ± 0.88 mg L-1). No significant difference (p>0.05) was found for the zootechnical performance parameters evaluated. The conclusion was that the ultrafine bubble generator is more efficient to maintain a high dissolved oxygen concentration in the recirculating water in Nile tilapia breeding tanks than the conventional aeration system


O objetivo da presente pesquisa foi avaliar a utilização do gerador de bolhas ultrafinas (fabricação própria) para oxigenação de tanques de criação de tilápia do Nilo em sistema de recirculação de água. A pesquisa foi dividida em duas etapas: 1) teste de saturação de oxigênio; 2) aplicação da tecnologia de produção de bolhas ultrafinas na criação da tilápia do Nilo. Na primeira, a água de um tanque teste (2,0 m³) foi completamente desoxigenada e o gerador de bolhas ultrafinas acionado por um período de 60 min. Na segunda, o gerador foi ligado a um sistema de recirculação para criação de tilápia para comparar o desempenho geral desse sistema ao de outro no qual utilizou-se aeração convencional. O gerador de bolhas ultrafinas foi capaz de atingir 100% de saturação de oxigênio no tanque teste (27,8 °C) em aproximadamente 21 min e, ao final de 60 min, a concentração foi 21,8 mg/L (saturação 277,52%). Foi observada diferença significativa (p<0,05) entre a concentração média de oxigênio dissolvido no tratamento com bolhas ultrafinas (9,80 ± 3,68 mg/L) e o tratamento com aeração convencional (3,47 ± 0,88 mg/L). Não foi observada diferença significativa (p>0,05) para nenhum dos parâmetros de desempenho zootécnico avaliados. Pode-se concluir que o gerador de bolhas ultrafinas é mais eficiente em manter alta a concentração de oxigênio dissolvido em tanques de criação de tilápia em sistema de recirculação de água quando comparado ao sistema convencional de aeração


Assuntos
Animais , Aeração/métodos , Recirculação da Água , Oxigenação , Ciclídeos/fisiologia , Pesqueiros
6.
Braz. J. Pharm. Sci. (Online) ; 58: e19608, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383987

RESUMO

Abstract Nanobubbles are nanometer size bubbles having different constituents of varying physicochemical characteristic for the inner core and outer shell. Nanobubbles are mainly fabricated to improve the stability, bioavailability and improve the biodistribution of the delivered drug to the specific targeted site. Their small sizes bubbles allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Nanobubbles are developing as important contrast agents for imaging and carriers for drug delivery at targeted region. Sonication is the primary method for preparation of nanobubbles followed by thin-layer evaporation, high shear emulsification, mechanical agitation and coacervation or coalescence. With exposure to ultrasound/extracorporeal shock waves, the drug is liberated from the nanobubbles into the target cells. This review paper is an effort to reveal the different formulation development techniques briefly and varying shell and core content for developing nanobubbles.


Assuntos
Preparações Farmacêuticas/análise , Sistemas de Liberação de Medicamentos/efeitos adversos , Vasos Sanguíneos , Terapia Genética/efeitos adversos , Meios de Contraste/farmacologia , Métodos
7.
J Colloid Interface Sci ; 410: 188-94, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23998373

RESUMO

Force curves between a flat mica substrate and a polystyrene microsphere were measured with an atomic force microscope (AFM) in carefully degassed water and aqueous NaCl, CaCl2, and AlCl3 solutions. The pH of the water used does not change significantly with degassing treatment, and its value remains close to 6. Electrolyte concentration ranges from 10-4 to 10-2M and pH from 4.7 to 5.1. We have found that the repulsive long-range electrostatic force between mica and polystyrene is attenuated by the presence of electrolytes and counterbalanced by a long-range attractive force, which we referred to as a hydrophobic force, which is longer-ranged than the ever present attractive van der Waals force. This force, which includes the adhesive bridging of residual air bubbles and newborn vapor cavities, and any other unknown forces, is reasonably well represented by a unique exponential law. Prefactor and decaying length are not very sensitive to electrolyte type, concentration, and pH, suggesting that any new force included in the law, in addition to adhesive bridges, should obey a non-classical electrostatic mechanism. However, we also know that liquid/solid contact angle and liquid/vapor surface tension increase with electrolyte concentration and valence increasing the stability of bubbles and cavities which in turn increase the bridging force. Clearly, these effects are hidden in the empirical force law.


Assuntos
Compostos de Alumínio/química , Cloreto de Cálcio/química , Cloretos/química , Gases/química , Poliestirenos/química , Cloreto de Sódio/química , Cloreto de Alumínio , Eletrólitos/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Soluções , Propriedades de Superfície , Água/química
8.
An. acad. bras. ciênc ; 82(1): 3-12, Mar. 2010. ilus, graf
Artigo em Inglês | LILACS | ID: lil-539311

RESUMO

Water at normal conditions is a fluid thermodynamically close to the liquid-vapor phase coexistence and features a large surface tension. This combination can lead to interesting capillary phenomena on microscopic scales. Explicit water molecular dynamics (MD) computer simulations of hydrophobic solutes, for instance, give evidence of capillary evaporation on nanometer scales, i.e., the formation of nanometer-sized vapor bubbles (nanobubbles) between confining hydrophobic surfaces. This phenomenon has been exemplified for solutes with varying complexity, e.g., paraffin plates, coarse-grained homopolymers, biological and solid-state channels, and atomistically resolved proteins. It has been argued that nanobubbles strongly impact interactions in nanofluidic devices, translocation processes, and even in protein stability, function, and folding. As large-scale MD simulations are computationally expensive, the efficient multiscale modeling of nanobubbles and the prediction of their stability poses a formidable task to the'nanophysical' community. Recently, we have presented a conceptually novel and versatile implicit solvent model, namely, the variational implicit solvent model (VISM), which is based on a geometric energy functional. As reviewed here, first solvation studies of simple hydrophobic solutes using VISM coupled with the numerical level-set scheme show promising results, and, in particular, capture nanobubble formation and its subtle competition to local energetic potentials in hydrophobic confinement.


Água em condições normais consiste de um fluido termodinamicamente próximo à fase líquida-vapor exibindo alta tensão superficial. Esta combinação conduz a fenômenos capilares interessantes na escala microscópica. Simulações computacionais baseadas em técnicas de Dinâmica Molecular em solutos hidrofóbicos por exemplo fornecem evidências do fenômeno de evaporação capilar em escalas nanométricas dando origem à formação de bolhas nanométricas confinadas entre superfícies hidrofóbicas. Este fenômeno tem sido exemplificado em solutos de complexidade variável, ex placas de parafina, polímeros, canais biológicos e de estado sólido bem como proteínas tratadas atomicamente. Tem sido arguido quebolhas nanométricas possuem impacto significativo nos mecanismos fluídicos nanométricos e na estabilidade e dobramento de proteínas. Dado que simulações baseadas em dinâmica molecular são custosas computacionalmente, o desenvolvimento de uma modelagem multiescala eficiente sob o ponto de vista computacional impõe uma tarefa formidável à comunidadenano-física. Recentemente apresentamos um novo e versátil modelo de solvente denominado modelo implícito variacional de solvente (VISM) o qual é baseado em um funcional deenergia geométrica. Tal como apresentado aqui os primeiros estudos de solvatação de solutos hidrofóbicos simples usando VISM acoplados com esquemas numéricos de conjunto de níveis mostraram resultados promissores e em particular capturaram a formação de nano-bolhas e a sua competição com potenciais localmente energéticos em condições de confinamento hidrofóbico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA