Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1049-1064, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482790

RESUMO

The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena. Here, we review and discuss existent thermometries suitable for single nanoparticles heated under illumination. These methods are classified in four categories according to the region where they assess temperature: (1) the average temperature within a diffraction-limited volume, (2) the average temperature at the immediate vicinity of the nanoparticle surface, (3) the temperature of the nanoparticle itself, and (4) a map of the temperature around the nanoparticle with nanoscale spatial resolution. In the latter, because it is the most challenging and informative type of method, we also envisage new combinations of technologies that could be helpful in retrieving nanoscale temperature maps. Finally, we analyze and provide examples of strategies to validate the results obtained using different thermometry methods.


Assuntos
Nanopartículas , Nanoestruturas , Temperatura Alta , Nanopartículas/química , Nanoestruturas/química , Temperatura
2.
Front Chem ; 9: 712659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368084

RESUMO

Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.

3.
Mater Sci Eng C Mater Biol Appl ; 102: 578-588, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147030

RESUMO

An adsorbent-heater-thermometer nanomaterial, (ZIF-8,EuxTby)@AuNP, based on ZIF-8 (adsorbent), containing Eu3+ and/or Tb3+ ions (thermometer) and gold nanoparticles (AuNPs, heater) was designed, synthetized, characterized, and applied to controlled drug release. These composite materials were characterized as core-shell nanocrystals with the AuNPs being the core, around which the crystalline ZIF-8 has grown (shell) and onto which the lanthanide ions have been incorporated or chemosorbed. This shell of ZIF-8 acts as adsorbent of the drugs, the AuNPs act as heaters, while the luminescence intensities of the ligand and the lanthanide ions are used for temperature monitoring. This thermo-responsive material can be activated by visible irradiation to release small molecules in a controlled manner as established for the model pharmaceutical compounds 5-fluorouracil and caffeine. Computer simulations and transition state theory calculations shown that the diffusion of small molecules between neighboring pores in ZIF-8 is severely restricted and involves high-energy barriers. These findings imply that these molecules are uploaded onto and released from the ZIF-8 surface instead of being inside the cavities. This is the first report of ZIF-8 nanocrystals (adsorbents) containing simultaneously lanthanide ions as sensitive nanothermometers and AuNPs as heaters for controlled drug release in a physiological temperature range. These results provide a proof-of-concept that can be applied to other classes of materials, and offer a novel perspective on the design of self-assembly multifunctional thermo-responsive adsorbing materials that are easily prepared and promptly controllable.


Assuntos
Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Termômetros , Zeolitas/química , Adsorção , Cafeína/farmacologia , Morte Celular/efeitos dos fármacos , Difusão , Érbio/química , Fluoruracila/farmacologia , Luminescência , Temperatura , Térbio/química , Fatores de Tempo
4.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28009096

RESUMO

There is an urgent need to develop new diagnosis tools for real in vivo detection of first stages of ischemia for the early treatment of cardiovascular diseases and accidents. However, traditional approaches show low sensitivity and a limited penetration into tissues, so they are only applicable for the detection of surface lesions. Here, it is shown how the superior thermal sensing capabilities of near infrared-emitting quantum dots (NIR-QDs) can be efficiently used for in vivo detection of subcutaneous ischemic tissues. In particular, NIR-QDs make possible ischemia detection by high penetration transient thermometry studies in a murine ischemic hindlimb model. NIR-QDs nanothermometers are able to identify ischemic tissues by means of their faster thermal dynamics. In addition, they have shown to be capable of monitoring both the revascularization and damage recovery processes of ischemic tissues. This work demonstrates the applicability of fluorescence nanothermometry for ischemia detection and treatment, as well as a tool for early diagnosis of cardiovascular disease.


Assuntos
Raios Infravermelhos , Isquemia/diagnóstico por imagem , Medições Luminescentes/métodos , Pontos Quânticos/química , Termômetros , Termometria/métodos , Animais , Camundongos
5.
Nano Lett ; 16(3): 1695-703, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26845418

RESUMO

The recent development of core/shell engineering of rare earth doped luminescent nanoparticles has ushered a new era in fluorescence thermal biosensing, allowing for the performance of minimally invasive experiments, not only in living cells but also in more challenging small animal models. Here, the potential use of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles as subcutaneous thermal probes has been evaluated. These temperature nanoprobes operate in the infrared transparency window of biological tissues, enabling deep temperature sensing into animal bodies thanks to the temperature dependence of their emission spectra that leads to a ratiometric temperature readout. The ability of active-core/active-shell Nd(3+)- and Yb(3+)-doped nanoparticles for unveiling fundamental tissue properties in in vivo conditions was demonstrated by subcutaneous thermal relaxation monitoring through the injected core/shell nanoparticles. The reported results evidence the potential of infrared luminescence nanothermometry as a diagnosis tool at the small animal level.


Assuntos
Medições Luminescentes/instrumentação , Nanopartículas/química , Neodímio/química , Termômetros , Itérbio/química , Administração Cutânea , Animais , Temperatura Corporal , Raios Infravermelhos , Luminescência , Camundongos , Nanopartículas/administração & dosagem , Neodímio/administração & dosagem , Fenômenos Fisiológicos da Pele , Itérbio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA