Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056544

RESUMO

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Camundongos , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Células HEK293 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Camundongos Endogâmicos BALB C , Feminino , Multimerização Proteica , Domínios Proteicos/imunologia , Ligação Proteica
2.
MAbs ; 16(1): 2297451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170638

RESUMO

The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.


Assuntos
Anticorpos Antivirais , Vírus da Encefalite Equina Venezuelana , Animais , Cavalos , Humanos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Neutralizantes/farmacologia , Receptores Fc , Imunoglobulina G
3.
Immun Inflamm Dis, v. 12, e1353, jul. 2024
Artigo em Português | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5407

RESUMO

Background: SARS‐CoV2 virus, responsible for the COVID‐19 pandemic, hasfour structural proteins and 16 nonstructural proteins. S‐protein is one of thestructural proteins exposed on the virus surface and is the main target forproducing neutralizing antibodies and vaccines. The S‐protein forms a trimerthat can bind the angiotensin‐converting enzyme 2 (ACE2) through itsreceptor binding domain (RBD) for cell entry.Aims: The goal of this study was to express in HEK293 cells a new RBDrecombinant protein in a constitutive and stable manner in order to use it asan alternative immunogen and diagnostic tool for COVID‐19.Materials & Methods: The protein was designed to contain an immuno-globulin signal sequence, an explanded C‐terminal section of the RBD, aregion responsible for the bacteriophage T4 trimerization inducer, and sixhistidines in the pCDNA‐3.1 plasmid. Following transformation, the cells wereselected with geneticin‐G418 and purified from serum‐fre culture super-natants using Ni2+‐agarand size exclusion chromatography. The protein wasstructurally identified by cross‐linking and circular dichroism experiments,and utilized to immunize mice in conjuction with AS03 or alum adjuvants.The mice sera were examined for antibody recognition, receptor‐bindinginhibition, and virus neutralization, while spleens were evaluated forγ‐interferon production in the presence of RBD. Results: The protein released in the culture supernatant of cells, andexhibited a molecular mass of 135 kDa with a secondary structure like themonomeric and trimeric RBD. After purification, it formed a multimericstructure comprising trimers and hexamers, which were able to bind the ACE2receptor. It generated high antibody titers in mice when combined with AS03adjuvant (up to 1:50,000). The sera were capable of inhibiting binding ofbiotin‐labeled ACE2 to the virus S1 subunit and could neutralize the entry ofthe Wuhan virus strain into cells at dilutions up to 1:2000. It produced specificIFN‐γ producing cells in immunized mouse splenocytes.Discussion: Our data describe a new RBD containing protein, formingtrimers and hexamers, which are able to induce a protective humoral andcellular response against SARS‐CoV2.Conclusion: These results add a new arsenal to combat COVID‐19, as analternative immunogen or antigen for diagnosis.

4.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005854

RESUMO

Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.


Assuntos
Infecções por Arbovirus , Arbovírus , Doenças Transmissíveis , Viroses , Infecção por Zika virus , Zika virus , Animais , Humanos , Anticorpos Monoclonais/uso terapêutico , Infecções por Arbovirus/tratamento farmacológico , Infecções por Arbovirus/prevenção & controle , Viroses/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176045

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.


Assuntos
Batracoidiformes , Peixes-Gato , Venenos de Peixe , Perciformes , Camundongos , Animais , Venenos de Peixe/toxicidade , Soros Imunes
6.
Vaccines (Basel) ; 11(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37242998

RESUMO

There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a prospective cohort study to assess the humoral response using Elecsys® anti-SARS-CoV-2 S (anti-S-RBD) of 452 healthcare workers (HCWs) in a private laboratory in Lima, Peru at 21, 120, 210, and 300 days after a third dose with a BNT162b2 heterologous booster in HCW previously immunized with two doses of BBIBP-CorV, depending on whether or not they received a fourth dose with the mRNA1273 heterologous vaccine and on the history of previous SARS infection -CoV-2. Of the 452 HCWs, 204 (45.13%) were previously infected (PI) with SARS-CoV-2, and 215 (47.57%) received a fourth dose with a heterologous mRNA-1273 booster. A total of 100% of HCWs presented positive anti-S-RBD 300 days after the third dose. In HCWs receiving a fourth dose, GMTs 2.3 and 1.6 times higher than controls were observed 30 and 120 days after the fourth dose. No statistically significant differences in anti-S-RBD titers were observed in those HCWs PI and NPI during the follow-up period. We observed that HCWs who received a fourth dose with the mRNA1273 and those previously infected after the third dose with BNT162b2 (during the Omicron wave) presented higher anti-S-RBD titers (5734 and 3428 U/mL, respectively). Further studies are required to determine whether patients infected after the third dose need a fourth dose.

7.
Vaccines (Basel) ; 11(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36851324

RESUMO

We evaluated neutralizing antibody (NAbs) levels as a protective factor against vaccine breakthrough infection (VBI) in healthcare workers (HCWs) during the third COVID-19 wave in Peru. This retrospective cohort study employed the information from a private laboratory in Lima (Peru) of HCW who received only two BBIBP-CorV vaccines or (additionally) a heterologous booster with BNT162b2. We evaluated the association between the VBI and the levels of NAbs at 21, 90, 180, and 210 days after the BBIBP-CorV second dose. NAbs were calculated with the cPass™ SARS-CoV-2 Neutralization Antibody Detection kit (surrogate virus neutralization test (sVNT)) and the Elecsys® anti-SARS-CoV-2 S Test. Of the 435 HCW evaluated, 31.72% had an infection previous to vaccination, 68.28% received a booster dose, and 23.21% had a VBI during the third wave. The variables associated with a lower risk of VBI were male sex (aRR: 0.43) and those who had (180 days after BBIBP-CorV inoculation) NAbs levels ≥ 60% (aRR: 0.58) and ≥90% (aRR: 0.59) on cPass™, and ≥500 with Elecsys® (aRR: 0.58). HCW whose NAbs persisted at higher levels six months after the BBIBP-CorV showed a lower risk of suffering from a VBI during the third COVID-19 wave.

8.
Vaccines (Basel) ; 11(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851357

RESUMO

BACKGROUND: Here, we investigated the impact of IFN-lambda-3 polymorphism on specific IgG responses for COVID-19 in older adults seropositive for CMV. METHODS: Blood samples of 25 older adults of both sexes were obtained at three different times: during a micro-outbreak (MO) of SARS-CoV-2 in 2020; eight months after (CURE); and 30 days after the administration of the second dose of ChadOx-1 vaccine (VAC). The specific IgG for both SARS-CoV-2 and CMV antigens, neutralizing antibodies against SARS-CoV-2, and also the polymorphism profile for IFN-lambda-3 (rs12979860 C > T) were assessed. RESULTS: Higher levels of specific IgG for SARS-CoV-2 antigens were found in the MO and VAC than in the CURE time-point. Volunteers with specific neutralizing antibodies against SARS-CoV-2 showed better specific IgG responses for SARS-CoV-2 and lower specific IgG levels for CMV than volunteers without specific neutralizing antibodies. Significant negative correlations between the specific IgG levels for SARS-CoV-2 and CMV were found at the MO time-point, as well as in the group of individuals homozygous for allele 1 (C/C) in the MO time-point and heterozygotes (C/T) in the CURE time-point. CONCLUSION: Our results suggested that both CMV seropositivity and the homozygosis for allele 1 (C/C) in IFN-lambda-3 gene can negatively impact the antibody response to COVID-19 infection and vaccination in older adults.

9.
Viruses, v.15 n. 11, 2177, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5172

RESUMO

Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.

10.
Int J Mol Sci, v. 24, n. 9, 8338, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4907

RESUMO

Envenomation by venomous fish, although not always fatal, is capable of causing damage to homeostasis by activating the inflammatory process, with the formation of edema, excruciating pain, necrosis that is difficult to heal, as well as hemodynamic and cardiorespiratory changes. Despite the wide variety of pharmacological treatments used to manage acute symptoms, none are effective in controlling envenomation. Knowing the essential role of neutralizing polyclonal antibodies in the treatment of envenoming for other species, such as snakes, this work aimed to produce a polyclonal antiserum in mice and test its ability to neutralize the main toxic effects induced by the venoms of the main venomous Brazilian fish. We found that the antiserum recognizes the main toxins present in the different venoms of Thalassophryne nattereri, Scorpaena plumieri, Potamotrygon gr. Orbignyi, and Cathorops spixii and was effective in pre-incubation trials. In an independent test, the antiserum applied immediately to the topical application of T. nattereri, P. gr orbygnyi, and C. spixii venoms completely abolished the toxic effects on the microcirculation, preventing alterations such as arteriolar contraction, slowing of blood flow in postcapillary venules, venular stasis, myofibrillar hypercontraction, and increased leukocyte rolling and adherence. The edematogenic and nociceptive activities induced by these venoms were also neutralized by the immediate application of the antiserum. Importantly, the antiserum prevented the acute inflammatory response in the lungs induced by the S. plumieri venom. The success of antiserum containing neutralizing polyclonal antibodies in controlling the toxic effects induced by different venoms offers a new strategy for the treatment of fish envenomation in Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA