Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
2.
Front Microbiol ; 15: 1392333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104589

RESUMO

Introduction: Foodborne infections, which are frequently linked to bacterial contamination, are a serious concern to public health on a global scale. Whether agricultural farming practices help spread genes linked to antibiotic resistance in bacteria associated with humans or animals is a controversial question. Methods: This study applied a long-read Oxford Nanopore MinION-based sequencing to obtain the complete genome sequence of a multi-drug resistant Escherichia coli strain (L1PEag1), isolated from commercial cape gooseberry fruits (Physalis peruviana L.) in Ecuador. Using different genome analysis tools, the serotype, Multi Locus Sequence Typing (MLST), virulence genes, and antimicrobial resistance (AMR) genes of the L1PEag1 isolate were determined. Additionally, in vitro assays were performed to demonstrate functional genes. Results: The complete genome sequence of the L1PEag1 isolate was assembled into a circular chromosome of 4825.722 Kbp and one plasmid of 3.561 Kbp. The L1PEag1 isolate belongs to the B2 phylogroup, sequence type ST1170, and O1:H4 serotype based on in silico genome analysis. The genome contains 4,473 genes, 88 tRNA, 8 5S rRNA, 7 16S rRNA, and 7 23S rRNA. The average GC content is 50.58%. The specific annotation consisted of 4,439 and 3,723 genes annotated with KEEG and COG respectively, 3 intact prophage regions, 23 genomic islands (GIs), and 4 insertion sequences (ISs) of the ISAs1 and IS630 families. The L1PEag1 isolate carries 25 virulence genes, and 4 perfect and 51 strict antibiotic resistant gene (ARG) regions based on VirulenceFinder and RGI annotation. Besides, the in vitro antibiotic profile indicated resistance to kanamycin (K30), azithromycin (AZM15), clindamycin (DA2), novobiocin (NV30), amikacin (AMK30), and other antibiotics. The L1PEag1 isolate was predicted as a human pathogen, matching 464 protein families (0.934 likelihood). Conclusion: Our work emphasizes the necessity of monitoring environmental antibiotic resistance, particularly in commercial settings to contribute to develop early mitigation techniques for dealing with resistance diffusion.

3.
Front Plant Sci ; 15: 1410314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091311

RESUMO

Introduction: Cape gooseberry (Physalis peruviana L.) is a wellconsumed crop in Ecuador, whose fruits are abundant in bioactive molecules. Its rapid post-harvest deterioration and safety limit its market potential. Methodology: To gather baseline data on the prevalence of bacterial taxa among groups, we employed 16S ribosomal RNA (16S rRNA) amplicon gene sequencing to detect changes in the bacterial community structure in cape gooseberry fruits harvested from an organic farm production system (# 270 samples x two ripeness stages), and fruits obtained from an open-air market (#270). Results: This is the first report of bacterial taxa inhabiting cape gooseberry fruits. Shannon's diversity index revealed that the fruits purchased from the market and the unripe stage had the highest level of bacterial diversity (average Shannon indices of 3.3 and 3.1) followed by those collected from the field at the mature ripe stage (2.07). Alpha diversity analysis indicated that there were no significant differences in the number of taxa or evenness within the sample, whereas there was a significant difference in beta diversity between the groups. Rhizobiaceae was the most abundant family in fruits originating from the field regardless of the ripe stage, while Acetobacteraceae, Pseudomonadaceae, Fusobacteriaceae, Bacteroidaceae, and Erwiniaceae were the most abundant families in the market group. At the genus level, Liberibacter was the most abundant phytopathogen in fruits originating from the field, while Gluconobacter was the most abundant in samples collected from the market. The phytopathogen Candidatus_Liberibacter was the most abundant in samples collected from the field, while the fruits purchased from the market stands contained opportunistic enteric pathogens such as Escherichia vulneris, Klebsiella pneumoniae, and K. variicola, their relative abundance varied with the sample. In addition, potential pathogens of animal origin such as Fusobacterium necrophorum, Porphyromonas levii, Helcococcus ovis, and Trueperella pyogenes were found in almost all samples at varying relative abundance. Conclusion: Our study provides basic information on the microbiome of cape gooseberries from agriculture fields to the table along with the detection of several pathogenic microorganisms with possible impact on food safety and public health therefore, strategies for reducing bacterial contamination in both farm and retail markets are compulsory.

4.
Braz J Microbiol ; 55(3): 2669-2681, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39028533

RESUMO

Actinobacteria, pervasive in aquatic and terrestrial environments, exhibit a filamentous morphology, possess DNA with a specific G + C content and production of numerous secondary metabolites. This study, focused on actinobacteria isolated from marine seagrass, investigating their antibacterial activity against fish pathogens. Among 28 isolates, Streptomyces argenteolus TMA13 displayed the maximum zone of inhibition against fish pathogens-Aeromonas hydrophila (10 mm), Aeromonas caviae (22 mm), Edwardsiella tarda (17 mm), Vibrio harveyi (22 mm) and Vibrio anguillarum (12 mm) using the agar plug method. Optimization of this potent strain involved with various factors, including pH, temperature, carbon source and salt condition to enhance both yield production and antibacterial efficacy. In anti-biofilm assay shows the maximum percentage of inhibition while increasing concentration of TMA13 extract. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) assays with TMA13 crude extract demonstrated potent activity against fish pathogens at remarkably low concentrations. Time-kill kinetics assay showcased growth curve variations over different time intervals for all fish pathogens treated with a 100 µg/ml concentration of crude extract, indicating a decline in cells viability and progression into the death phase. Additionally, fluorescence microscopic visualization of bacterial cells exposed to the extracts emitting green and red fluorescence, enabling live-dead cell differentiation was also studied. Further characterization of the crude extract through GC-MS and FT-IR analyses performed and identified secondary metabolites with functional groups exhibiting significant antibacterial activity. This study elucidates the capacity of Streptomyces argenteolus TMA13 to enhance the production of antibiotic compounds effective against fish pathogens.


Assuntos
Antibacterianos , Doenças dos Peixes , Testes de Sensibilidade Microbiana , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Animais , Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Cinética , Vibrio/efeitos dos fármacos , Biofilmes/efeitos dos fármacos
5.
Health Secur ; 22(S1): S45-S49, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39037030

RESUMO

Developing and sustaining relationships and networks before an emergency occurs is crucial. The Biocontainment Unit Leadership Workgroup is a consortium of the 13 Regional Emerging Special Pathogen Treatment Centers in the United States. Established in 2017, the volunteer-based workgroup is composed of operational leaders dedicated to maintaining readiness for special pathogen care. Monthly meetings focus on addressing operational challenges, sharing best practices, and brainstorming solutions to common problems. Task forces are leveraged to tackle more complex issues that are identified as priorities. In 2022, members of the workgroup were harnessed for response efforts related to mpox, Sudan ebolavirus, and Marburg virus disease. The weekly Outbreak Readiness call is a shared effort between the Biocontainment Unit Leadership Workgroup and the Special Pathogens Research Network of the National Emerging Special Pathogens Training and Education Center. Call participants included leaders of the Regional Emerging Special Pathogen Treatment Centers and federal partners who shared weekly updates on operational readiness of units, case counts, laboratory capacity, available medical countermeasures, and other pertinent information. The routine exchange of real-time information enabled learning and collegial sharing of experiences, highlighted the experience of the network to federal partners, and provided situational awareness of special pathogen outbreaks across the country. The consortium enabled this rapid convening of partners to meet an urgent need for special pathogen response. The weekly Outbreak Readiness call is a communication model and scalable framework that serves both domestic preparedness efforts and international efforts should the need for a collaborative global response arise. In this case study, we describe the framework and experience of this partnership, along with the structure of rapid deployment for group convening.


Assuntos
Surtos de Doenças , Doença pelo Vírus Ebola , Liderança , Humanos , Surtos de Doenças/prevenção & controle , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Estados Unidos , Contenção de Riscos Biológicos/métodos , Doença do Vírus de Marburg/prevenção & controle
6.
Am J Infect Control ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969069

RESUMO

In the United States, the system for special pathogen patient care incorporates a network of federally funded US biocontainment units that maintain operational readiness to care for patients afflicted by high-consequence infectious diseases (HCIDs). This network has expanded in number of facilities and in scope, serving as a regional resource for special pathogen preparedness. Lessons learned for maintaining these units are shared with the intent of informing new and existing biocontainment units.

7.
Curr Res Microb Sci ; 7: 100244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974672

RESUMO

Pathogenic bacteria, introduced in water sources through faecal contamination, have traditionally been investigated as individual species, leading to the establishment of microbial, sanitary, and environmental quality indicators. Recent advancements in our understanding of the microbiome and its intricate interactions within the human-microbiome-environment network advocate for a broader evaluation of the impact of disinfection on the entire microbial community. In this study, we conducted a comprehensive screening experiment involving four disinfection processes; ozone, ultraviolet radiation with wavelengths between 200 - 280 nm (UV-C), photo-Fenton, and chlorination, applied to two distinct water sources; surface (SW) and groundwater (GW). The cells that remained viable after treatment were recovered using Brain Heart Infusion (BHI) broth, and 16S rRNA gene sequencing was used for their identification. Our findings confirmed the presence of faecal contamination in the water sources and revealed distinct effects of each treatment on the recovered bacterial populations. The chlorination of groundwater samples likely had a greater impact on bacteria in a vegetative state than on spores. Consequently, this led to a higher abundance in the BHI cultures of sporulating bacteria such as Bacillus (increasing from 0.36 to 93.62 %), while ozonation led to an elevated recovery of Pseudomonas (increasing from 45.2 to 69.9 %). Conversely, in surface water, calcium hypochlorite and ozone treatments favored the selection of Staphylococcus and Bacillus, whose relative abundance in the cultures increased from 0 to 39.22 % and from 0.35 to 96.6 %, respectively. In groundwater, Pseudomonas was resistant to UV-C radiation and their relative abundance increased from 45.2 % to 93.56 %, while photo-Fenton was effective against this bacterial group decreasing its relative abundance to 0.46 %. However, other genera such as Bacteroides, Aeromonas, and Citrobacter seemed to be less injured by this disinfection process. BHI broth was successful in recovering various bacterial groups that exhibited resistance to sublethal water disinfection.

8.
Phytopathology ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976565

RESUMO

Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (WLB) and spike blast (WSB) were best described by the logistic model compared to the Gompertz and exponential models. The non-linear logistic infection rates (rL) were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for WSB than for WLB. The onset of WLB began with a spatial cluster pattern according to autocorrelation analysis and Moran's Index (I) values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The WSB onset did not start with a spatial cluster pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (Kmax) was 1.0 for WSB, and less than 1.0 for WLB. Aggregation of WLB and WSB was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both WLB and WSB, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.

9.
Indian J Microbiol ; 64(2): 475-481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010992

RESUMO

The human oral cavity is normally colonized by microorganisms including bacteria, fungi, archaea, viruses and protozoa. The aim of this study was to determine the frequency of Candida spp., in de oral cavity in a group of medical students from the north of Mexico. Oral sample were obtained from 240 healthy students. The specimens were analyzed by traditional microbiology cultures and DNA sequencing. Candida spp., grew in Sabouraud dextrose agar from 57 samples and subsequently were isolated and phenotyped. The definitive identification to the species level was done by sequence analysis. The yeasts were identified as follow: 28 Clavispora lusitaniae, 20 Candida albicans, 5 Pichia kudriavzevii and 4 Candida parapsilosis. Our findings revealed that 23.75% of the healthy population has a potential pathogen in their mouth. Surprisingly, C. albicans is not the predominant yeast; instead other non-Candida species are the colonizers of the oral cavity as normal microbiota. C. lusitaniae is considered an emerging opportunistic pathogen in immunosuppressive patients. This paper pretends to highlight the presence of this yeast in the oral cavity in immunocompetent young adults. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01145-x.

10.
Braz J Microbiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985434

RESUMO

An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA