Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microorganisms ; 11(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37894025

RESUMO

The fungicide iprodione (IPR) (3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) is a highly toxic compound. Although IPR has been restricted, it is still being applied in many places around the world, constituting an environmental risk. The biodegradation of IPR is an attractive option for reducing its residues. In this study, we isolated thirteen IPR-tolerant bacteria from a biopurification system designed to treat pesticides. A study of biodegradation using different strains was comparatively evaluated, and the best degradation rate of IPR was presented by Achromobacter sp. C1 with a half-life (T1/2) of 9 days. Based on a nano-LC-MS/MS analysis for the strains, proteins solely expressed in the IPR treatment were identified by highlighting the strain Achromobacter sp. C1, with 445 proteins primarily involved in the biosynthesis of secondary metabolites and microbial metabolism in diverse environments. Differentially expressed protein amidases were involved in six metabolic pathways. Interestingly, formamidase was inhibited while other cyclases, i.e., amidase and mandelamide hydrolase, were overexpressed, thereby minimizing the effect of IPR on the metabolism of strain C1. The dynamic changes in the protein profiles of bacteria that degrade IPR have been poorly studied; therefore, our results offer new insight into the metabolism of IPR-degrading microorganisms, with special attention paid to amidases.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32866918

RESUMO

A quick and efficient method was optimized and validated to determine chlorpyrifos in biobeds using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Chlorpyrifos was extracted from the matrix with 30 mL of a mixture of acetone, phosphoric acid and water 98:1:1 (v/v/v). After homogenization, centrifugation and filtration, 125 µL of the extract was evaporated and reconstituted in 5 mL of methanol acidified with 0.1% acetic acid. Validation was performed by studying analytical curve linearity (r2), estimated instrument and method limits of detection and limits of quantification (LODi, LODm, LOQi and LOQm, respectively), accuracy, precision (expressed as relative standard deviation, RSD), and matrix effect. Accuracy and precision were determined from the amount of pesticide recovered from biobed blank samples (i.e. without pesticide residue) spiked with chlorpyrifos at three different concentrations (2, 10 and 50 mg kg-1), with seven replicates at each concentration. For all three concentrations studied, the average recovery values obtained were between 96 and 115% with RSD values lower than 20%. The validated LOQ obtained was 2 mg kg-1 (from recovery studies) and the matrix effect observed was lower than ±20%, which demonstrated that there was neither considerable suppression nor enhancement of the analyte signal. The biobed system efficiently degraded chlorpyrifos in both 1) simulation of accidental spillage and 2) application of diluted pesticide solution. In the latter case, all the values obtained at the final sampling time (14 months) were below the validated LOQm.


Assuntos
Clorpirifos/análise , Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Biodegradação Ambiental , Reatores Biológicos , Brasil , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
3.
Electron. j. biotechnol ; 16(6): 11-11, Nov. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-696552

RESUMO

Background: The biobed is a simple biopurification system used to prevent the point-source pesticide contamination that occurs at farm level. The typical composition of the biomixture used in this system is soil, peat and straw in volumetric proportions of 1:1:2. The principal component is straw due to its positive effects on biological activity and thus pesticide degradation. However, access to straw can be limited in some regions, so it must be replaced by other more readily available lignocellulosic residues. Results: Therefore, two alternate lignocellulosic materials (barley husks and pine sawdust) were evaluated as partial substitutes for straw. The degradation of a repeatedly applied mixture of six pesticides by these alternates was assessed. The microbial respiration and fluorescein diacetate (FDA) hydrolysis activity were also assessed. The results showed that the highest degradation efficiency was found in mixtures containing straw and barley husks. Each biomixtures tested achieved a high degradation (50 to 90%) of all the pesticides used except iprodione. Repeated applications of pesticides resulted in a slowing of the degradation rate of all pesticide types in all biomixtures. FDA activity and microbial respiration were higher in the biomixtures containing barley husks and straw compared to the mixture with pine sawdust, a result consistent with the pesticide degradations observed. Conclusions: This paper demonstrates that the straw in the traditional biomixture can be partially replaced by other lignocellulosic materials to efficiently degrade a mixture of pesticides, even when the pesticides are added in successive applications and high concentrations.


Assuntos
Praguicidas/metabolismo , Biodegradação Ambiental , Celulose/metabolismo , Lignina/metabolismo , Praguicidas/isolamento & purificação , Fazendas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA