Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Pharm Sci ; 113(8): 2542-2551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815860

RESUMO

Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.


Assuntos
Estabilidade de Medicamentos , Espectrometria de Massas por Ionização por Electrospray , Tetra-Hidronaftalenos , Tiofenos , Cromatografia Líquida de Alta Pressão/métodos , Tiofenos/química , Tiofenos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/análise , Oxirredução , Agonistas de Dopamina/análise , Agonistas de Dopamina/química , Hidrólise , Contaminação de Medicamentos/prevenção & controle , Fotólise
2.
Environ Sci Pollut Res Int ; 31(11): 16453-16472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321273

RESUMO

The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.


Assuntos
Luz , Azul de Metileno , Azul de Metileno/química , Raios Ultravioleta , Fotólise , Luz Azul
3.
Int J Biol Macromol ; 254(Pt 2): 127805, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918600

RESUMO

In this work, an over-the-counter commercial dye, containing direct blue 151 in its composition, which is also discarded without any environmental regulation, was efficiency photodegraded using a green chemistry-synthesized nanocomposites type silver nanoparticles (AgNPs) supported on pistachio husk (PH). The green synthesis (GS) of the nanocomposites was carried out using the Anemopsis californica leaf extract (ExAc) as a reducing-stabilizing agent (AgNPs/ExAc-PH), for the first time. The presence of AgNPs on the nanocomposite surface was corroborated by field emission transmission electron microscope (FE-TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The synthesized AgNPs/ExAc-PH has a bimodal size of 24 and 25 nm (4.86 % each) and a 0.72 % of AgNPs on its surface. AgNPs were adhered to the PH surface, through secondary bonds between the Ag and the cellulose of the PH. The optimum conditions, for efficient photocatalytic degradation, were 5 mg of nanocomposite, 3.18 × 10-2 M of NaBH4, natural sunlight, and stirring; this results in a photodegradation efficiency of 100 % almost instantaneously. Furthermore, it was shown that the dye degradation process is primarily due to the photocatalytic degradation of the dye, which occurs almost instantaneously.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Pistacia , Prata/química , Compostos Azo , Celulose , Nanopartículas Metálicas/química , Substâncias Redutoras , Nanocompostos/química , Extratos Vegetais/química , Antibacterianos/química
4.
Environ Sci Pollut Res Int ; 30(58): 121450-121464, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950129

RESUMO

This study investigated the influence of environmental factors (UV radiation and salinity) in the degradative process of microplastics (MPs). MPs derived from polypropylene (PP), polystyrene (PS), and ethylene-vinyl acetate (EVA) were subjected to accelerated photodegradation while being submerged in distilled water or artificial seawater. Depending on the polymer, changes in surface properties, new functional chemical group formation and oxidative index, and thermal characteristics of samples were observed. After photodegradation experiments, EVA-MPs samples showed an increase in their thermal resistance, besides the changes in their surface. PP-MPs crystallinity index increased upon exposure to UV radiation. PS samples showed a higher carbonyl and hydroxyl index after 30 h of UV exposure. The methodology exploited applies to any location in the world and can be comparable once considering the total ultraviolet index (UVI). The saline medium increases the crystallinity index of PP and EVA-MPs samples and intensifies the formation of new carbonyl and hydroxyl bonds in EVA-MPs samples. The results showed that several environmental factors should be considered in interpreting MPs photodegradation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Raios Ultravioleta , Radical Hidroxila , Polímeros , Polipropilenos , Poliestirenos
5.
Photochem Photobiol Sci ; 22(12): 2699-2714, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740886

RESUMO

Dyes are naked-eye detectable even at low concentration levels and can cause environmental damage when released into aquatic effluents; therefore, methods for removing the residual color from the aquatic media are always a current issue. In this paper, degradation of three xanthene dyes, Rhodamine B, Eosin Y, and Sodium Fluorescein, using photoactivated persulfate was evaluated at pH 3.0 and 11.0. The dyes' degradation followed a pseudo-first-order reaction. Although the solution is completely decolorized in 40 min at pH 3.0, achieving 75% mineralization requires a longer reaction time of 180 min. Furthermore, GC-MS analyses indicate that degradation products are mainly low-molecular weight acids, CO2 and H2O. Experiments carried out in dark and under UV irradiation showed substantial contribution of radical (SO4•- and HO•) and non-radical pathways to dye degradation in both pH. Additionally, to get more insights into the degradation pathways, HOMO-LUMO energy gaps of the dyes were calculated by DFT using MPW1PW91/MidiXo level of theory and, in general, the lower the bandgap, the faster the degradation. Fukui functions revealed that the preferential sites to radical attack were the xanthene or the benzoate portion depending on the pH, wherein attack to the xanthene ring provided better kinetic and mineralization results.

6.
Polymers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447433

RESUMO

The search to deliver added value to industrialized biobased materials, such as cellulose derivatives, is a relevant aspect in the scientific, technological and innovation fields at present. To address these aspects, films of cellulose acetate (CA) and a perylene derivative (Pr) were fabricated using a solution-casting method with two different compositions. Consequently, these samples were exposed to dimethylformamide (DMF) solvent vapors so that its influence on the optical, wettability, and topographical properties of the films could be examined. The results demonstrated that solvent vapor could induce the apparent total or partial preferential orientation/migration of Pr toward the polymer-air interface. In addition, photocatalytic activities of the non-exposed and DMF vapor-exposed films against the degradation of methylene blue (MB) in an aqueous medium using light-emitting diode visible light irradiation were comparatively investigated. Apparently, the observed improvement in the performance of these materials in the MB photodegradation process is closely linked to the treatment with solvent vapor. Results from this study have allowed us to propose the fabrication and use of the improved photoactivity "all-organic" materials for potential applications in dye photodegradation in aqueous media.

7.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177245

RESUMO

This study aimed to investigate how an ultralow content of a molybdenum disulfide (MoS2) two-dimensional particle affects the photodegradation mechanism of polystyrene (PS). Here, an accelerated weathering study was presented on neat polystyrene and its nanocomposites produced with 0.001, 0.002, 0.003 and 0.005 wt% of molybdenum disulfide (MoS2) exposed for various irradiation intervals (up to 8 weeks). The polymer photo-transformations were monitored using size exclusion chromatography (SEC), infrared spectroscopy (FTIR), and UV-Vis spectroscopy. The FTIR and UV/Vis results indicate that the PS degradation mechanism was not altered by the presence of MoS2 particles; however, the degradation reactions were slowed down at higher MoS2 contents (>0.003%). The SEC results proved the stabilizer effect due to MoS2 particles, where M¯n, M¯w, and M¯w/M¯n values after 8 weeks were less modified when compared with the neat PS results. The MoS2 acted as a UV stabilizer, and these two-dimensional particles acted by deactivating the free radicals generated by the PS matrix, even considering the low amount of the filler (<0.005 wt%).

8.
Heliyon ; 9(4): e15020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082640

RESUMO

The use of Kevlar in the field of ballistic and stabbing protection has been studied by researchers in polymeric composites for this purpose. This study presents complementary knowledge on energy absorption and dissipation in ρ-aramid fabric impregnated with shear thickening fluids (STFs), especially aiming to obtain better protection against impacts that are deeply associated with STFs, as well as color change, accelerated aging (QUV), and penetration depth (drop tower test). In addition, Scanning Electron Microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) was performed. The research shows that there was a good distribution of STF particles on the ρ-Aramid fabric surface, promoting increased friction between the interfilament and the yarns, further increasing performance and, consequently, improving the energy absorption and dissipation mechanism and, also, the penetration effectiveness in relation to non-impregnated ρ-Aramid fabric. Regarding the protection efficiency against UV exposure (250-400 nm region), there was a significantly decreased compared to those non-impregnated Kevlar® woven with STFs. The FTIR analysis showed that the conditions of aging, after exposure to UV, did not produce new functional groups, that is, there was no chemical modification. Finally, Kevlar fabric impregnated with STFs improved penetration depth performance with the blades independent of the blade type with up to 81% increase in resistance. This result was improved due to interactions between the nanoparticles present in STFs, yarns, and even high-performance woven impregnated with shear-thickening fluids.

9.
Environ Sci Pollut Res Int ; 30(14): 41014-41027, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626055

RESUMO

In this work, the photolysis of the antibiotic norfloxacin (NOR) and the formation of its photodegradation products were studied using UV and solar radiation. Their extraction was also assessed in Milli-Q water and secondary effluents from a wastewater treatment plant. The photolysis of NOR was chromatographically monitored. The structure of each degradation product is related to the reaction of NOR with reactive oxygen species (ROS), as confirmed using radical quenchers and mass spectrometry. Additionally, the feasibility of extracting NOR and its degradation products was assessed using a commercial solid phase extraction system. Photolysis results showed the formation of five degradation products, generated under exposure to both types of radiation. The decays in NOR concentrations for the solar and UV treatments were adjusted to pseudo first-order kinetics with apparent constant values of ksolar = 1.19 × 10-3 s-1 and kUV = 3.84 × 10-5 s-1. Furthermore, the superoxide radical was the main participant species in the formation of the degradation products P3, P4, and P5. Species P1 and P2 do not need this radical for their formation. The presence of NOR in water opens the possibility of its photolysis by solar radiation. This work contributes to the understanding of the mechanisms that mediate its photodegradation, in addition to studying potential options for its determination and its photodegradation products in the sample treatment.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Humanos , Antibacterianos/química , Norfloxacino/análise , Fotólise , Luz Solar , Cinética , Água/química , Poluentes Químicos da Água/análise , Raios Ultravioleta
10.
Environ Technol ; 44(27): 4248-4259, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35694867

RESUMO

ABSTARCTThe antibiotic amoxicillin (AMX) is a semisynthetic aminopenicillin, classified as an ß-lactam antibiotic. This work aims to evaluate the AMX degradation (190 mg L-1), in aqueous medium, applying photo-Fenton ([TOC]0 = 100 mgC L-1; FH2O2 = 3.27 mmol min-1; [Fe2+] = 0.27 mmol L-1; pH = 3.0; T = 40°C) and acid hydrolysis processes. Along the experiments, samples were withdrawn and analyzed by a total organic carbon (TOC) analyzer and a liquid chromatography system coupled to diode array (HPLC-DAD) and mass spectrometry (HPLC-MS) detectors. The hydrolysis process proved to be less efficient, because AMX removals greater than 80% were observed only after 24 hours of reaction (pH 2). Conversely, the photo-Fenton process removed completely AMX in just 20 minutes, reaching 85% of TOC removal in 2 hours. Finally, the AMX aqueous solutions treated by the studied processes was also evaluated in respect of its toxicity to some microorganisms, applying two antimicrobial susceptibility tests: disk-diffusion and broth microdilution methods. It was observed that the AMX aqueous solutions, pretreated by the photo-Fenton process, for just 7.5 min of reaction time, did not inhibit the microorganisms growth. The obtained results show that the photo-Fenton process was able to degrade AMX, in a relatively short time, and that the generated degradation products did not inhibit the microorganisms growth, when compared to acid hydrolysis process. Thus, it was verified the potential application of the photo-Fenton system as a pretreatment step to conventional biological oxidation processes for the treatment of industrial wastewaters.


Assuntos
Amoxicilina , Poluentes Químicos da Água , Amoxicilina/toxicidade , Peróxido de Hidrogênio/química , Hidrólise , Ferro/química , Antibacterianos/toxicidade , Antibacterianos/química , Oxirredução , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA