Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958000

RESUMO

The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 µg/mL) and 35% (3.5 µg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-ß1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-ß1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-ß1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.

2.
Front Physiol ; 15: 1347414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487263

RESUMO

Solar radiation can cause damage to the skin, and the use of sunscreens is one of the main protective measures. However, photounstable ultraviolet (UV) filters can generate photoproducts and reactive oxygen species (ROS). Adding antioxidants, such as resveratrol, to enhance the action of UV filters in sunscreens is an interesting strategy for reducing the damage caused by UV radiation exposure. However, new compounds must have their stability, safety and efficacy guaranteed. Avobenzone, a commonly used UV filter, stands out as a promising candidate for structural modification to enhance its stability. Its molecular hybridization with other UV filters and antioxidants can lead to safer and more effective compounds. In this study, the photoprotective and antioxidant potential of a derivative of avobenzone, hybridized with resveratrol's molecule, was evaluated using in vitro models of cells in monolayer and reconstructed human skin (RHS). Phototoxic potential was assessed using fibroblasts, while the antioxidant activity was measured using the DCFH2-DA probe in HaCaT keratinocytes and in-house RHS. The derivative exhibited UV absorption and demonstrated photostability. It did not exhibit any phototoxic nor photoreactivity potential. Additionally, it was able to photo stabilize a combination of photounstable UV filters, avobenzone and octyl methoxycinnamate, and to reduce their phototoxic potential. In terms of antioxidant activity, the derivative successfully protected against UVA-induced ROS production in the HaCaT keratinocytes model, showing statistical equivalence to the antioxidant control, quercetin (10 µg/mL). Furthermore, experiments conducted in the RHS model demonstrated a significant reduction of 30.7% in ROS generation compared to the irradiated control. This study demonstrated that structural modifications of avobenzone can lead to the development of a broad spectrum (absorbing UVB and UVA II radiation, as well as a portion of the UVA I radiation), non-phototoxic, non-photoreactive and photostable derivative for sunscreen and anti-aging formulations. This derivative enhances protection against oxidative stress induced by UV radiation and improves the effectiveness of sun protection. In addition to the monolayer model, the use of a standardized in-house RHS model was highly relevant for evaluating the effects of UV radiation and skin aging. This model closely mimics human physiological conditions and enables the testing of new compounds and the investigation of protective mechanisms against skin damage.

3.
MethodsX ; 10: 102140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007620

RESUMO

The method describes pigment analysis from microalgae/phytoplankton extracts using electron-transfer Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (ET MALDI MS). Current microalgae/phytoplankton pigment analysis requires resource- and time-intensive chromatographic methods due to the broad polarity range of the target analytes. On the other hand, traditional MALDI MS chlorophyll analysis, using proton-transfer matrices such as 2,5-dihydroxybenzoic acid (DHB) or α-cyano-4-hydroxycinnamic acid (CHCA), results in central metal loss and phytol-ester cleavage. ET MALDI MS is an alternative for the rapid screening and detection of pigments in microalgae extracts.•MALDI matrices with ionization energies above 8.0 eV guarantee electron-transfer processes from photosynthetic and photoprotective pigments whose ionization energies lay below 7.5 eV.•ET MALDI MS pigment analysis agrees with data gathered from conventional chromatographic techniques (HPLC) and optical microscopy for pigment extracts from C. vulgaris cultures and freshwater phytoplankton samples.•The ET MALDI MS method allows fast and reliable detection of pigments in microalgae cultures and freshwater phytoplankton samples.

4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982196

RESUMO

Many activities have been described for propolis, including, antiviral, antibacterial, antifungal, anti-inflammatory, immunoregulatory, antioxidant and wound healing properties. Recently, propolis has been highlighted due to its potential application in the pharmaceutical and cosmetic industries, motivating a better understanding of its antioxidant and anti-inflammatory activities. Propolis and its main polyphenolic compounds presented high antioxidant activity, and effectiveness as broad spectrum UVB and UVA photoprotection sunscreens. Through a qualitative phytochemical screening, the ethanolic red propolis extracts (EEPV) (70% at room temperature and 70% at a hot temperature) presented a positive result for flavonoids and terpenoids. It presented an antioxidant activity for reducing 50% of DPPH of 17 and 12 µg/mL for extraction at room temperature and at a hot temperature, respectively. The UPLC-QTOF-MS/MS analysis allowed the annotation of 40 substances for EEPV-Heated and 42 substances for EEPV-Room Temperature. The IC50 results of the ABTS scavenging activity was 4.7 µg/mL for both extractions, at room temperature and at a hot temperature. Additionally, we also evaluated the cytotoxic profile of propolis extracts against macrophage (RAW 264.7 cells) and keratinocytes (HaCaT cells), which showed non-cytotoxic doses in cell viability assays even after a long period of exposure. In addition, propolis extracts showed antibacterial activity for Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), demonstrating potential biological activity for the creation of formulations aimed at disease control and prevention.


Assuntos
Anti-Infecciosos , Ascomicetos , Própole , Própole/farmacologia , Própole/química , Antioxidantes/farmacologia , Antioxidantes/química , Protetores Solares/farmacologia , Espectrometria de Massas em Tandem , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1536166

RESUMO

Plant extracts are rich in secondary metabolites responsible for numerous biological activities. This study aimed to evaluate the antioxidant, antibacterial and photoprotective potentials, toxicity and chemical composition of extracts and fractions of stems and roots of Tarenaya aculeata. Phytochemical analyses were performed at qualitative and quantitative levels to evaluate the classes of secondary metabolites. The sun protection factor (SPF) and antioxidant potentials were determined spectrophotometrically, the antibacterial activity was tested against seven bacteria and the toxicity was evaluated using Artemia salina assay. Phytochemical screening revealed the presence of alkaloids, phenolic compounds, flavonoids, glycosides, tannins and saponins. The levels of phenolic compounds, tannins and alkaloids, SPF and antioxidant potentials showed greater results in the stem (SF) and root (RF) fractions in relation to the stem (SE) and root (RE) extracts. All samples exhibited a broad spectrum of antibacterial activity, with MIC values ranging from 31.25 to 250 Hg mL-1. SE, SF and RF caused mortality in A. salina larvae, with LC50 of 347.06, 34.71 and 85.39 ng mL-1, respectively, whereas RE was non-toxic. Thus, T. aculeata is rich in bioactive secondary metabolites, although further studies will be needed to characterize its chemical constituents and investigate their adverse effects.


Los extractos de plantas son ricos en metabolitos secundarios responsables de numerosas actividades biológicas. Este estudio tuvo como objetivo evaluar el potencial antioxidante, antibacteriano y fotoprotector, ademas de la toxicidad y la composición química de extractos y fracciones de tallos y raíces de Tarenaya aculeata. Se realizaron análisis fitoquímicos a nivel cualitativo y cuantitativo para evaluar las clases de metabolitos secundarios. El factor de protección solar (SPF) y los potenciales antioxidantes se determinaron espectrofotométricamente, la actividad antibacteriana se probó contra siete bacterias y la toxicidad se evaluó mediante el ensayo con Artemia salina. El tamizaje fitoquímico reveló la presencia de alcaloides, compuestos fenólicos, flavonoides, glucósidos, taninos y saponinas. Los niveles de compuestos fenólicos, taninos y alcaloides, SPF y potencial antioxidante mostraron mayores resultados en las fracciones de tallo (SF) y raíz (RF) en relación a los extractos de tallo (SE) y raíz (RE). Todas las muestras exhibieron actividad antibacteriana de amplio espectro, con valores de MIC que oscilaron entre 31,25 y 250 Hg mL-1. SE, SF y RF causaron mortalidad en larvas de A. salina, con CL50 de 347,06; 34,71 y 85,39 µg mL-1, respectivamente, mientras que RE no fue tóxico. Por tanto, T. aculeata es rica en metabolitos secundarios bioactivos, aunque se necesitarán más estudios para caracterizar sus componentes químicos e investigar sus efectos adversos.


Extratos vegetais são ricos em metabólitos secundários responsáveis por inúmeras atividades biológicas. Este estudo teve como objetivo avaliar os potenciais antioxidante, antibacteriano e fotoprotetor, toxicidade e composição química de extratos e frações de caules e raízes de Tarenaya aculeata. Análises fitoquímicas foram realizadas em níveis qualitativo e quantitativo para avaliar as classes de metabólitos secundários. Fator de proteção solar (FPS) e potenciais antioxidantes foram determinados espectrofotometricamente, a atividade antibacteriana testada contra sete bactérias e a toxicidade avaliada pelo ensaio com Artemia salina. A triagem fitoquímica revelou a presença de alcaloides, compostos fenólicos, flavonoides, glicosídeos, taninos e saponinas. Os teores de compostos fenólicos, taninos e alcaloides, FPS e potencial antioxidante apresentaram maiores resultados nas frações caule (SF) e raiz (RF) em relação aos extratos de caule (SE) e raiz (RE). Todas as amostras exibiram atividade antibacteriana de amplo espectro, com valores de MIC variando de 31,25 a 250 µg mL-1. SE, SF e RF causaram mortalidade em larvas de A. salina, com LC50 de 347,06, 34,71 e 85,39 Hg mL-1, respectivamente, enquanto RE não foi tóxico. Portanto, T. aculeata é rico em metabólitos secundários bioativos, embora mais estudos sejam necessários para caracterizar seus constituintes químicos e investigar seus efeitos adversos.

6.
Front Plant Sci ; 13: 920881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003821

RESUMO

To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.

7.
Electron. j. biotechnol ; 53: 44-53, Sep.2021. ilus tab
Artigo em Inglês | LILACS | ID: biblio-1451239

RESUMO

BACKGROUND This study aimed to produce carotenoids of two bacterial strains obtained and isolated from Caatinga soil in Northeastern Brazil and to evaluate their antioxidant and photoprotective activities. The morphological identification of bacteria was performed by Gram staining and molecularly confirmed through the 16S rRNA gene. The production of carotenoids was performed on two 23 factorial designs to analyze the influence of independent variables (temperature range, luminosity, agitation, spiral presence, and bacterial isolate type) for maximum carotenoid yield. The selected condition has been transferred to a bioreactor (10L). The identification of carotenoids was performed by liquid chromatography (HPLC) and mass spectrometry (LC-MS). Antioxidant activity was determined by inhibiting the bcarotene/linoleic acid system and the effectiveness as sunscreen was measured through its sun protection factor (SPF). RESULTS The results revealed that the isolates FT-7.22 and FT-5.12 were identified as Kocuria palustris; producers of a rare C50 carotenoid sarcinaxanthin. This is the first report on the production of carotenoids by this species from the Caatinga Domain. The pigment that was obtained from the Tryptic Soy Broth (TSB) medium in the best conditions of the factorial designs (increased agitation, aeration, and light exposure) exhibited a significant increase in the carotenoid production. The isolated FT-7.22 reached a higher sarcinaxanthin concentration (112,480 lg/L), and it exhibited promising antioxidant (76.53 ± 0.09%) and photoprotective activities (SPF = 9.36 ± 0.52). CONCLUSIUON This study demonstrated the ability of K. palustris to produce carotenoid sarcinaxanthin with antioxidant and photoprotective activities so that it can be applied in cosmetic formulations. How to cite: Mendes-Silva TCD, Vidal EE, de Souza RFR, et al. Production of carotenoid sarcinaxant


Assuntos
Carotenoides/química , Micrococcaceae/metabolismo , Micrococcaceae/química , Antioxidantes/química , Brasil , Carotenoides/farmacologia , Antioxidantes/farmacologia
8.
Appl Microbiol Biotechnol ; 105(9): 3521-3532, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900423

RESUMO

Ultraviolet radiation, continuously reaching our planet's surface, is a type of electromagnetic energy within the wavelength range of 10 to 400 nm. Despite essential for all life on Earth, ultraviolet radiation may have severe adverse cellular effects, including DNA dimerization and production of reactive oxygen species. Radioresistant microorganisms can survive under high doses of ultraviolet radiation, enduring the direct and indirect effects on nucleic acids and other biomolecules. The synthesis and accumulation of photoprotective compounds are among the main strategies employed by radioresistant yeast species to bear the harmful effects of ultraviolet radiation. A correlation between pigments and resistance to ultraviolet radiation has been widely recognized in these microorganisms; however, there is still some debate on this topic, with non-pigmented strains sometimes being more resistant than their pigmented counterparts. In this review, we explore the role of photoprotective compounds-specifically, melanin, carotenoids, and mycosporines-and compare the differences found in resistance between pigmented and non-pigmented yeasts. We also discuss the biotechnological potential of these photoprotective compounds, with special emphasis on those produced by non-pigmented yeast strains, such as phytoene and phytofluene. The use of "-omics" approaches should further unveil the radioresistance mechanisms of non-pigmented yeasts, opening new opportunities for both research and commercial applications. KEY POINTS: • Updated knowledge on photoprotective compounds from radioresistant yeasts. • Differences on radioresistance between pigmented and non-pigmented yeasts. • Future prospects over the study of non-pigmented photoprotective compounds.


Assuntos
Raios Ultravioleta , Leveduras , Melaninas , Pigmentação
9.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466685

RESUMO

Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products. Several reviews have already been developed on these photoprotective compounds, but they focus on specific features. Herein, an extremely complete database on mycosporines and mycosporine-like amino acids, covering the whole class of these natural sunscreen compounds known to date, is presented. Currently, this database has 74 compounds and provides information about the chemistry, absorption maxima, protonated mass, fragments and molecular structure of these UV-absorbing compounds as well as their presence in organisms. This platform completes the previous reviews and is available online for free and in the public domain. This database is a useful tool for natural product data mining, dereplication studies, research working in the field of UV-absorbing compounds mycosporines and being integrated in mass spectrometry library software.

10.
Rev. ciênc. farm. básica apl ; 42: 1-15, 20210101.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1177886

RESUMO

Objectives: The aim of this study was to evaluate cellular indicators, which change with exposure to ultraviolet (UV) radiation and can be used as parameters for measuring sunscreens efficiency. Methods: Commercial strains of L929 and HaCaT cells (skin dermis and epidermis, respectively), from the cell bank of Rio de Janeiro, were exposed to different doses of UVA (350 nm) and UVB (309 nm) radiation. The evaluation of the photoprotective potential of sunscreens was analyzed with cell viability, lipid peroxidation and ROS generation tests. Samples of sunscreen with SPF values ranging from 15 to 60 were applied to a quartz plate superimposed on the top of a microplate containing the cell culture, and then the system was irradiated. Results: The viability and lipid peroxidation of the two cell lines remained unchanged after exposure to UVA radiation. When exposed to UVB radiation, the reduction in viability and the increase in lipid peroxides were dose-dependent, that is, they varied from 3.15% to 95.4%, and from 1.2 to 42.7 nM MDA/pg protein, respectively, both for the L929 strain. The dose of 0.5 J/cm2 reduced by 41.4%±1.67 the number of viable cells, and the dose of 30 J/cm2 promoted the oxidation of 42.7 nM of MDA/pg protein. These doses were selected to evaluate the photoprotective effectiveness of commercial sunscreens. Sunscreens exposed to UVB rays could prevent the loss of cell viability (viability remained around 100% for higher SPF) and the formation of lipid peroxides (30 to 80% reduction of peroxide levels). None of the two cell strains, submitted to UVB radiation, formed amounts of intracellular ROS in a dose-dependent manner. Under exposure to UVA radiation, only the HaCaT cell line produced the largest amounts of ROS in a dose-dependent manner. After treating these cells with photoprotective formulations (20 J/cm2), the researchers observed a reduction in the amount of ROS formed. Conclusions: The parameters of cell viability and lipid peroxidation were promising to evaluate the photoprotective capacity of sunscreens against UVB radiation. The generation of ROS expressed in the HaCaT strain can discriminate the photoprotective potential of formulations against UVA radiation, as sunscreens reduced the formation of ROS. These results suggest that in vitro tests that evaluate the damage caused to cells can predict cellular indicators of the photoprotective effectiveness of sunscreens and contribute to minimize these tests in the initial phase of product research and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA