Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Ecol Evol ; 14(8): e11724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114175

RESUMO

In this study, we examined the relationship between sea surface temperature (SST) and phytoplankton abundance in coastal regions of the Brazilian South Atlantic: São Paulo, Paraná, and Santa Catarina, and the Protection Area of Southern right whales (Eubalaena australis) in Santa Catarina (APA), a conservation zone established along 130 km of coastline. Using SST and chlorophyll-a (Chl-a) data from 2002 to 2023, we found significant differences in SST between the regions, with São Paulo having the highest SST, followed by Paraná and Santa Catarina. All locations showed a consistent increase in SST over the years, with North Santa Catarina, APA and São Paulo experiencing the lowest rate of increase. Correlation analyses between SST and Chl-a revealed a stronger inverse relationship in North Santa Catarina and APA, indicating an increased response of Chl-a to SST variations in this region. The presence of protected area appears to play an essential role in reducing the negative impacts of increasing SST. Specifically, while there is a wealth of research on the consequences of global warming on diverse coastal and oceanic areas, heterogeneity among different settings persists and the causes for this necessitating attention. Our findings have implications for both localized scientific approaches and broader climate policies, emphasizing the importance of considering coastal ecosystem resilience to climate change in future conservation and adaptation strategies.

2.
Oecologia ; 205(2): 271-279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822197

RESUMO

Concordance occurs when two or more biological groups are correlated to each other. Examining the degree of concordance between communities has been a central goal in ecology. However, few studies have assessed the levels of community concordance at large spatial scales. We used a dataset obtained by the National Lakes Assessment (United States Environmental Protection Agency) to evaluate whether (i) the levels of concordance between aquatic communities were higher at the continental scale than within individual ecoregions of the United States and (ii) whether the levels of concordance between phytoplankton and zooplankton were higher than those between the plankton and macroinvertebrates communities. At the continental scale, the levels of concordance between different pairs of aquatic communities were low and did not exceed those within the ecoregions. Furthermore, levels of concordance varied considerably among ecoregions. Our results suggest that interactions between aquatic communities likely determined concordance patterns; however, the expectation of higher levels of concordance between the phytoplankton and zooplankton communities than between them and the macroinvertebrates community was not supported. The consistently low and variable levels of concordance suggest that using surrogate groups is not recommendable for monitoring lakes in the United States, both at the continental and regional scales. According to our results, the prospect of using the surrogacy approach was low even for aquatic communities that are highly interactive or driven by similar environmental factors.


Assuntos
Lagos , Fitoplâncton , Zooplâncton , Estados Unidos , Animais , Invertebrados , Ecossistema
4.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631630

RESUMO

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Assuntos
Água Doce , Nanopartículas Metálicas , Microcystis , Fitoplâncton , Scenedesmus , Prata , Poluentes Químicos da Água , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Fitoplâncton/efeitos dos fármacos , Microcystis/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microcistinas/toxicidade , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Glob Chang Biol ; 30(3): e17238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38497342

RESUMO

The Western Antarctic Peninsula (WAP) experiences one of the highest rates of sea surface warming globally, leading to potential changes in biological communities. Long-term phytoplankton monitoring in Potter Cove (PC, King George Island, South Shetlands) from the 1990s to 2009 revealed consistently low biomass values, and sporadic blooms dominated by cold-water microplankton diatoms. However, a significant change occurred between 2010 and 2020, marked by a notable increase in intense phytoplankton blooms in the region. During this period, the presence of a nanoplankton diatom, Shionodiscus gaarderae, was documented for the first time. In some instances, this species even dominated the blooms. S. gaarderae is recognized for producing blooms in temperate waters in both hemispheres. However, its blooming in the northern Southern Ocean may suggest either a recent introduction or a range shift associated with rising temperatures in the WAP, a phenomenon previously observed in experimental studies. The presence of S. gaarderae could be viewed as a warning sign of significant changes already underway in the northern WAP plankton communities. This includes the potential replacement of microplankton diatoms by smaller nanoplankton species. This study, based on observations along the past decade, and compared to the previous 20 years, could have far-reaching implications for the structure of the Antarctic food web.


Assuntos
Diatomáceas , Fitoplâncton , Regiões Antárticas , Plâncton , Biomassa
6.
Mar Pollut Bull ; 201: 116173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382324

RESUMO

Harmful algal bloom (HAB) events in front of Pisco River, inside Paracas Bay and Lagunillas inlet on the southern coast of Peru was identified from a satellite index (IOPifa) generated with daily high-resolution satellite data of phytoplankton absorption (aphy,GIOP) and non-algal detrital material plus CDOM (adCDOM,GIOP) from the Generalized Inherent Optical Properties (GIOP) model of Modis-Aqua, Viirs-Snpp and Viirs-Jpss1 satellites were used. Phytoplankton density field data sampling from HAB's monitoring programs of IMARPE of 2018 and 2019 were used to validate and identify the extent and spatio-temporal variability of these events. The satellite index (IOPifa) identified for Modis-Aqua 9 active HABs, 8 events in final conditions and 6 events that do not represent HAB conditions, while for Viirs-Snpp found 14 active HABs, 7 events in decaying bloom conditions and 13 events that do not represent HABs; and for Viirs-Jpss1 the index identified 7 active events, 14 in final bloom conditions and 6 that do not represent HABs conditions. The one-factor anova model was applied (p-value = 0.32 > 0.05), indicating that there is no evidence of a difference in the population means of the indices for each sensor. Subsequently, the pairwise multiple comparisons analysis with a 95 % confidence level of Tukey's test confirmed that there are no significant differences in the satellite index value, the differences could be associated with the spectral characteristics of the cell density of the species community and the oceanographic and environmental conditions. The spatial overlap between the in situ harmful algal blooms areas and the calculated satellite index, shows the capacity of the IOP satellite data for the HABs detection. However, it was also evidenced that some HAB events with high phytoplankton cell density had low IOPifa values, while other events with lower cell density were easily identified by the satellite index. This would indicate the ability of the ocean inherent optical properties to differentiate the phytoplankton types that cause algal blooms.


Assuntos
Baías , Proliferação Nociva de Algas , Peru , Fitoplâncton
7.
Mar Pollut Bull ; 194(Pt B): 115388, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595454

RESUMO

The influence of the phytoplankton community in the light absorption budget was quantified in coastal waters of the North region of the San Jorge Gulf (Argentinian Patagonia). The phytoplanktonic composition and their absorption spectra were determined. Nanoflagellates and diatoms were the dominant groups. The toxigenic dinoflagellate Dinophysis acuminata was recorded in all the sampling sites. The optical characterization of the particulate material showed that 60 % of the absorption at 443 nm and 88 % of absorption at 675 nm was due to phytoplankton. The contributions of phytoplankton to total absorption at 443 nm wavelengths reached 50 %. The absorption by chromophoric dissolved organic matter (CDOM) and non-algal particles (NAP) was predominant in turbulent waters (>60 %). This study shows the influence of submesoscale physical-biological interactions in the light absorption budget. The field absorption spectra of active optical components are of interest in the assessment and development of regional ocean color satellite algorithms.


Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton , Algoritmos , Matéria Orgânica Dissolvida
8.
Front Microbiol ; 14: 1195776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426024

RESUMO

Human activities significantly influence the health of aquatic ecosystems because many noxious chemical wastes are discharged into freshwater bodies. Intensive agriculture contributes to the deterioration by providing indirectly fertilizers, pesticides, and other agrochemicals that affect the aquatic biota. Glyphosate is one of the most used herbicides worldwide, and microalgae are particularly sensitive to its formulation, inducing displacement of some green microalgae from the phytoplankton that leads to alterations in the floristic composition, which fosters the abundance of cyanobacteria, some of which can be toxigenic. The combination of chemical stressors such as glyphosate and biological ones, like cyanotoxins and other secondary metabolites of cyanobacteria, could induce a combined effect potentially more noxious to microalgae, affecting not only their growth but also their physiology and morphology. In this study, we evaluated the combined effect of glyphosate (Faena®) and a toxigenic cyanobacterium on the morphology and ultrastructure of microalgae in an experimental phytoplankton community. For this purpose, Microcystis aeruginosa (a cosmopolitan cyanobacterium that forms harmful blooms) and the microalgae Ankistrodesmus falcatus, Chlorella vulgaris, Pseudokirchneriella subcapitata, and Scenedesmus incrassatulus were cultivated, individually and jointly, exposing them to sub-inhibitory concentrations of glyphosate (IC10, IC20, and IC40). Effects were evaluated through scanning electron (SEM) and transmission electron (TEM) microscopy. Exposure to Faena® produced alterations in the external morphology and ultrastructure of microalgae both individually and in combined cultures. SEM evidenced the loss of the typical shape and integrity of the cell wall and an increase in the biovolume. TEM revealed reduction and disorganization of the chloroplast, variation in starch and polyphosphate granules, formation of vesicles and vacuoles, cytoplasm degradation, and cell wall continuity loss. The presence of M. aeruginosa was, for microalgae, an additional stress factor adding to the chemical stress produced by Faena®, increasing the damage in their morphology and ultrastructure. These results alert to the effects that can be caused by glyphosate and the presence of toxigenic bacteria on the algal phytoplankton in contaminated and anthropic and eutrophic freshwater ecosystems.

9.
Environ Sci Pollut Res Int ; 30(33): 81174-81188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314563

RESUMO

This study analyzes the distribution of nine potentially toxic trace elements (arsenic, antimony, bromine, cobalt, chromium, mercury, rubidium, selenium, and zinc) in sediments and plankton from two small mesotrophic lakes in a non-industrialized area impacted by the Caviahue-Copahue volcanic complex (CCVC). The two lakes have different plankton community structures and received different amounts of pyroclastic material after the last CCVC eruption. Trace element concentrations of surface sediments differed between lakes, according to the composition of the volcanic ashes deposited in the lakes. The size of organisms was the principal factor influencing the accumulation of most trace elements in plankton within each lake, being trace element concentrations generally higher in the microplankton than in the mesozooplankton. The planktonic biomass in the shallower lake was dominated by small algae and copepods, while mixotrophic ciliates and different-sized cladocerans dominated the deeper lake. These differences in the community structure and species composition influenced the trace element bioaccumulation, especially in microplankton, while habitat use and feeding strategies seem more relevant in mesozooplankton bioaccumulation. This work contributes to the scarce records of trace elements and their dynamics in plankton from freshwater ecosystems impacted by volcanic activity.


Assuntos
Plâncton , Oligoelementos , Plâncton/química , Lagos/química , Ecossistema , Argentina , Altitude , Monitoramento Ambiental
10.
Aquat Toxicol ; 260: 106590, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245407

RESUMO

Microplastic pollution is a growing concern mainly in aquatic environments due to its deleterious effects. Some types of microplastics, such as glitter, remain overlooked. Glitter particles are artificial reflective microplastics used by different consumers within arts and handcraft products. In nature, glitter can physically affect phytoplankton by causing shade or acting as a sunlight-reflective surface, influencing primary production. This study aimed to evaluate the effects of five concentrations of non-biodegradable glitter particles in two bloom-forming cyanobacterial strains, Microcystis aeruginosa CENA508 (unicellular) and Nodularia spumigena CENA596 (filamentous). Cellular growth rate, estimated by optical density (OD), demonstrated that the applied highest glitter dosage decreases cyanobacterial growth rate with a more evident effect on M. aeruginosa CENA508. The cellular biovolume of N. spumigena CENA596 increased following the application of high concentrations of glitter. Still, no significant difference was detected in chlorophyll-a and carotenoids' contents for both strains. These results suggest that environmental concentrations of glitter, similar to the highest dosage tested (>200 mg glitter L-1), may negatively influence susceptible organisms of the aquatic ecosystems, as observed with M. aeruginosa CENA508 and N. spumigena CENA596.


Assuntos
Cianobactérias , Microcystis , Poluentes Químicos da Água , Plásticos , Ecossistema , Microplásticos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA