Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Tissue Bank ; 25(1): 187-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37145371

RESUMO

Primary cell cultures are essential tools for elucidating the physiopathological mechanisms of the cardiovascular system. Therefore, a primary culture growth protocol of cardiovascular smooth muscle cells (VSMCs) obtained from human abdominal aortas was standardized. Ten abdominal aorta samples were obtained from patients diagnosed with brain death who were organ and tissue donors with family consent. After surgical ablation to capture the aorta, the aortic tissue was removed, immersed in a Custodiol® solution, and kept between 2 and 8 °C. In the laboratory, in a sterile environment, the tissue was fragmented and incubated in culture plates containing an enriched culture medium (DMEM/G/10% fetal bovine serum, L-glutamine, antibiotics and antifungals) and kept in an oven at 37 °C and 5% CO2. The aorta was removed after 24 h of incubation, and the culture medium was changed every six days for twenty days. Cell growth was confirmed through morphological analysis using an inverted optical microscope (Nikon®) and immunofluorescence for smooth muscle alpha-actin and nuclei. The development of the VSMCs was observed, and from the twelfth day, differentiation, long cytoplasmic projections, and adjacent cell connections occurred. On the twentieth day, the morphology of the VSMCs was confirmed by actin fiber immunofluorescence, which is a typical characteristic of VSMCs. The standardization allowed VSMC growth and the replicability of the in vitro test, providing a protocol that mimics natural physiological environments for a better understanding of the cardiovascular system. Its use is intended for investigation, tissue bioengineering, and pharmacological treatments.


Assuntos
Aorta Abdominal , Doenças Vasculares , Humanos , Morte Encefálica/metabolismo , Morte Encefálica/patologia , Músculo Liso Vascular/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Modelos Teóricos , Miócitos de Músculo Liso , Encéfalo , Células Cultivadas
2.
Environ Sci Pollut Res Int ; 30(17): 50057-50066, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787068

RESUMO

Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50 µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15 min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5 µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50 µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50 µg L-1 Cu), which could be due to the inhibition of water channels.


Assuntos
Metais Pesados , Anêmonas-do-Mar , Poluentes Químicos da Água , Animais , Cobre/metabolismo , Anêmonas-do-Mar/metabolismo , Ecossistema , Metais Pesados/metabolismo , Tamanho Celular , Poluentes Químicos da Água/metabolismo
3.
Einstein (Säo Paulo) ; 21: eAO0160, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440063

RESUMO

ABSTRACT Objective This study verified the replication efficiency of the Rocio virus in a primary culture of mouse neural cells. Methods Mixed primary cultures (neurons/glia) obtained from the brains of newborn isogenic BALB/c mice were inoculated with Rocio virus on the 7 th day of culture, and the development of cytopathogenic effects was monitored. The infection was confirmed via immunocytochemistry (anti-ROCV), while viral replication was quantified in infected primary cultures. The titration method used depended on the infection period. Results Rocio virus efficiently infected primary cultured neural cells, with the highest viral titer causing cytopathic changes was observed at 2 days post infection. The virus-infected primary culture survived for up to 7 days post infection, and viral load quantitation showed viral replication kinetics compatible with the cell death kinetics of cultures. Conclusion The findings of this study suggest that mouse neural cell primary cultures support Rocio virus replication and could be used as an alternative system for studying Flavivirus infection in the central nervous system.

4.
Microb Pathog ; 169: 105645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716923

RESUMO

Bovine gammaherpesvirus type 4 (BoHV-4) shows tropism for the endometrium, in which it causes the death of epithelial and stroma cells. Despite having anti-apoptotic genes in its genome, experiments based on immortalized cell lines have shown that BoHV-4 induces cell death by apoptosis. In the present study, we evaluated BoHV-4 replication, pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) mitochondrial genes expression and chromatin condensation in bovine endometrium primary culture cells (BEC) and in the Madin Darby bovine kidney (MDBK) cell line. Results showed that BoHV-4 has a preference for replication in BEC cells over the MDBK cell line, demonstrated by the high viral titer that is consistent with the tropism of the virus. In BEC cells, chromatin condensation was consistent with the values of viral kinetics at the late stage of infection, accompanied with a balance in the mRNA levels of apoptotic mitochondrial proteins. As a consequence, in those cells viral transmission would be enhanced by inhibiting apoptosis in the early stage of virus proliferation, allowing the complete production of viral progeny, and then, the induction of apoptosis in late stages would allow neighboring cells infection. In MDBK cells replication kinetics was coincident with the up-regulation of Bcl-2, which suggests that the productive infection in MDBK is associated with a lytic phase of the virus or another cell death pathway (probably autophagy mechanism) at the late stage of infection. The results agree with the study of nuclear morphology, where a constant chromatin condensation was observed over time. It is clear that the documented BoHV-4 apoptotic responses observed in the cell lines studied above are not valid in cells from primary cultures. The data presented in this study suggest that BoHV-4 could induce apoptosis in BEC cells without a leading role of the mitochondria pathway. Further studies will be necessary to characterize in detail the programmed cell death pathways involved in BoHV-4 infection in the primary cell cultures evaluated.


Assuntos
Herpesvirus Bovino 4 , Animais , Apoptose , Bovinos , Linhagem Celular , Cromatina , Feminino , Herpesvirus Bovino 4/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Replicação Viral
5.
Parasitol Res ; 121(4): 1155-1168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35079857

RESUMO

Echinococcus multilocularis is the etiological agent of alveolar echinococcosis (AE), a serious parasitic disease in the Northern Hemisphere. The E. multilocularis primary cell cultivation system, together with E. multilocularis genome data and a range of pioneering molecular-based tools have advanced the research on this and other cestodes. RNA interference (RNAi) and microRNA knock-down have recently contributed to the study of the cellular and molecular basis of tapeworm development and host-parasite interaction. These, as well as other techniques, normally involve an electroporation step for the delivery of RNA, DNA, peptides, and small molecules into cells. Using transcriptome data and bioinformatic analyses, we herein report a genome-wide comparison between primary cells of E. multilocularis and primary cells under electroporated conditions after 48 h of culture. We observed that ~ 15% of genes showed a significant variation in expression level, including highly upregulated genes in electroporated cells, putatively involved in detoxification and membrane remodeling. Furthermore, we found genes related to carbohydrate metabolism, proteolysis, calcium ion binding and microtubule processing significantly altered, which could explain the cellular dispersion and the reduced formation of cellular aggregates observed during the first 48 h after electroporation.


Assuntos
Cestoides , Infecções por Cestoides , Equinococose , Echinococcus multilocularis , Animais , Equinococose/parasitologia , Echinococcus multilocularis/genética , Eletroporação , Cultura Primária de Células
6.
Microorganisms ; 9(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34946119

RESUMO

Piscirickettsia salmonis is the etiologic agent of piscirickettsiosis, a disease that causes significant losses in the salmon farming industry. In order to unveil the pathogenic mechanisms of P. salmonis, appropriate molecular and cellular studies in multiple cell lines with different origins need to be conducted. Toward that end, we established a cell viability assay that is suitable for high-throughput analysis using the alamarBlue reagent to follow the distinct stages of the bacterial infection cycle. Changes in host cell viability can be easily detected using either an absorbance- or fluorescence-based plate reader. Our method accurately tracked the infection cycle across two different Atlantic salmon-derived cell lines, with macrophage and epithelial cell properties, and zebrafish primary cell cultures. Analyses were also carried out to quantify intracellular bacterial replication in combination with fluorescence microscopy to visualize P. salmonis and cellular structures in fixed cells. In addition, dual gene expression analysis showed that the pro-inflammatory cytokines IL-6, IL-12, and TNFα were upregulated, while the cytokines IL1b and IFNγ were downregulated in the three cell culture types. The expression of the P. salmonis metal uptake and heme acquisition genes, together with the toxin and effector genes ospD3, ymt, pipB2 and pepO, were upregulated at the early and late stages of infection regardless of the cell culture type. On the other hand, Dot/Icm secretion system genes as well as stationary state and nutrient scarcity-related genes were upregulated only at the late stage of P. salmonis intracellular infection. We propose that these genes encoding putative P. salmonis virulence factors and immune-related proteins could be suitable biomarkers of P. salmonis infection. The infection protocol and cell viability assay described here provide a reliable method to compare the molecular and cellular changes induced by P. salmonis in other cell lines and has the potential to be used for high-throughput screenings of novel antimicrobials targeting this important fish intracellular pathogen.

7.
Tissue Cell ; 71: 101507, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33592503

RESUMO

Animal models represent a crucial tool for biological research, so the establishment of new cultures is fundamental for the discovery of new therapies and the understanding of mechanisms of cell development in the most diverse animals. Here, we report the successful establishment of two new primary cell cultures derived from a South American bat (Artibeus planirostris). The establishment of a new bat culture can help in the investigation of new zoonoses since bats have been proposed as carriers of these diseases. We evaluated the chromosomal stability of cells from different passages. Primary cultures were collected from ear tissues and bone marrow of A. planirostris. Cultures were expanded, and osteogenic and adipogenic inductions were conducted for 21 days. For osteogenic differentiation, the medium was supplemented with 0.1 µM dexamethasone, 3 mM ß-glycerophosphate, and 10 µM L-ascorbic acid 2-phosphate. For adipogenic differentiation, the medium was supplemented with 5 µM rosiglitazone, 0.4 µM insulin, 0.1 mM indomethacin, and 0.1 µM dexamethasone. After the induction period, the cells were stained with Alizarin Red to assess osteogenic differentiation and Oil Red O to assess adipogenic differentiation. We observed the appearance of lipid droplets in adipocytes and the extracellular deposition of calcium matrix by osteocytes, indicating that bone marrow-derived cells and skin-derived cells of A. planirostris could successfully differentiate into these lineages. Also, the number of chromosomes remained stable for both primary cultures during passages 2, 4, 6, and 8.


Assuntos
Técnicas de Cultura de Células , Separação Celular , Quirópteros/metabolismo , Células-Tronco Mesenquimais , Pele , Animais , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pele/citologia , Pele/metabolismo
8.
Rev. peru. med. exp. salud publica ; 37(3): 547-553, jul-sep 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1145029

RESUMO

RESUMEN Las células madre humanas nacen con la creación de la vida misma y algunas de estas permanecen durante toda la vida. Por consiguiente, se pueden hallar en tejidos adultos y utilizarlas para investigaciones a nivel básico y aplicado. Actualmente, en nuestro país existe un creciente interés en el estudio y aplicación de células madre; sin embargo, existe poco conocimiento acerca del procedimiento para su identificación. Es por ello que este artículo tiene como objetivo dar a conocer, desde un punto de vista práctico, un procedimiento para el cultivo e identificación de células madre/estromales obtenidas de lipoaspirado humano (Adipose Stem Cells) con fines de investigación, el cual incluye la caracterización a nivel de inmunofenotipo, el potencial de diferenciación celular, la expresión génica y el control de calidad del cultivo celular, que sirva de apoyo para los profesionales de la comunidad científica peruana que deseen desarrollar esta línea de investigación.


ABSTRACT Human stem cells are born with the creation of life itself and some of them remain throughout life. Therefore, they can be found in adult tissues and used for basic and applied research. Currently, in our country there is a growing interest in the study and application of stem cells; however, little is known about the identification procedure. For this reason, this study aims to present, from a practical point of view, a procedure for the culture and identification of stem/stromal cells obtained from human lipoaspirate (Adipose Stem Cells), for research purposes. This procedure includes the immunophenotype characterization, cell differentiation potential, gene expression and cell culture quality control; and will serve as support for Peruvian scientific community professionals who wish to develop this line of research.


Assuntos
Células-Tronco , Técnicas de Cultura de Células , Pesquisa , Separação Celular , Tecido Adiposo , Inquéritos e Questionários , Medicina Regenerativa , Cultura Primária de Células , Terapia Baseada em Transplante de Células e Tecidos
9.
Polymers (Basel) ; 12(2)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024291

RESUMO

Some medical applications of magnetic nanoparticles require direct contact with healthy tissues and blood. If nanoparticles are not designed properly, they can cause several problems, such as cytotoxicity or hemolysis. A strategy for improvement the biological proprieties of magnetic nanoparticles is their functionalization with biocompatible polymers and nonionic surfactants. In this study we compared bare magnetite nanoparticles against magnetite nanoparticles coated with a combination of polyethylene glycol 3350 (PEG 3350) and polysorbate 80 (Tween 80). Physical characteristics of nanoparticles were evaluated. A primary culture of sheep adipose mesenchymal stem cells was developed to measure nanoparticle cytotoxicity. A sample of erythrocytes from a healthy donor was used for the hemolysis assay. Results showed the successful obtention of magnetite nanoparticles coated with PEG 3350-Tween 80, with a spherical shape, average size of 119.2 nm and a zeta potential of +5.61 mV. Interaction with mesenchymal stem cells showed a non-cytotoxic propriety at doses lower than 1000 µg/mL. Interaction with erythrocytes showed a non-hemolytic propriety at doses lower than 100 µg/mL. In vitro information obtained from this work concludes that the use of magnetite nanoparticles coated with PEG 3350-Tween 80 is safe for a biological system at low doses.

10.
Rev. Soc. Bras. Med. Trop ; 53: e20200257, 2020. graf
Artigo em Inglês | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136878

RESUMO

Abstract INTRODUCTION: Biomphalaria snails may display varying levels of susceptibility to Schistosoma mansoni infection. We have been developing an in vitro model to study the interaction between the snail and the parasite, using tissue-derived cell cultures from Biomphalaria. METHODS: The digestive gland- and kidney-derived cells from primary cultures of resistant (B. tenagophila Taim) and susceptible (B. tenagophila HM and B. glabrata BH) strains of Biomphalaria were exposed to S. mansoni sporocysts. RESULTS: S. mansoni sporocysts were surrounded and encapsulated exclusively by cells derived from the digestive gland (DG) of B. tenagophila Taim. The process was followed by a marked decrease in the number of free sporocysts in the culture medium. The morphological characteristics of DG-derived cells in culture have been described. CONCLUSIONS: Cells derived from DG (but not SK) primary cultures of B. tenagophila Taim may participate in S. mansoni sporocyst control.


Assuntos
Animais , Biomphalaria , Esquistossomose mansoni , Schistosoma mansoni , Oocistos , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA