Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382712

RESUMO

Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.


Assuntos
Benzofenonas , Estradiol , Gravidez , Humanos , Camundongos , Feminino , Animais , Benzofenonas/toxicidade , Estradiol/metabolismo , Morfogênese , RNA Mensageiro/metabolismo , Glândulas Mamárias Animais
2.
Steroids ; 203: 109363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182066

RESUMO

Decidualization, a crucial process for successful pregnancy establishment and maintenance, involves endometrial stromal cell differentiation. This process is orchestrated by estradiol (E2), progesterone, and other stimuli that increase intracellular cyclic adenosine monophosphate (cAMP) levels. The intracellular progesterone receptor (PR), encoded by the PGR gene, has a key role in decidualization. This study aimed to understand the role of sex steroids and cAMP in regulating PGR expression during the in vitro decidualization of the human immortalized endometrial stromal cell line, T-HESC. We subjected the cells to individual and combined treatments of E2, medroxyprogesterone (MPA), and cAMP. Additionally, we treated cells with PR and estrogen receptor antagonists and a protein kinase A (PKA) inhibitor. We evaluated the expression of PGR isoforms and decidualization-associated genes by RT-qPCR. Our findings revealed that cAMP induced PGR-B and PGR-AB expression by activating the PKA signaling pathway, while MPA downregulated their expression through the PR. Furthermore, downstream genes involved in decidualization, such as those coding for prolactin (PRL), insulin-like growth factor-binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1), exhibited positive regulation via the cAMP-PKA pathway. Remarkably, MPA-activated PR signaling induced the expression of IGFBP1 and DKK1 but inhibited that of PRL. In conclusion, we have demonstrated that the PKA signaling pathway induces PGR gene expression during in vitro decidualization of the T-HESC human endometrial stromal cell line. This study has unraveled some of the intricate regulatory mechanisms governing PGR expression during this fundamental process for implantation and pregnancy maintenance.


Assuntos
Decídua , Receptores de Progesterona , Gravidez , Feminino , Humanos , Decídua/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Endométrio/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , AMP Cíclico/metabolismo , Células Estromais/metabolismo , Expressão Gênica , Células Cultivadas
3.
Endocr Relat Cancer ; 31(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962553

RESUMO

Progesterone receptors (PRs) are biomarkers used as prognostic and predictive factors in breast cancer, but they are still not used as therapeutic targets. We have proposed that the ratio between PR isoforms A and B (PRA and PRB) predicts antiprogestin responsiveness. The MIPRA trial confirmed the benefit of 200 mg mifepristone, administered to patients with tumors with a high PRA/PRB ratio, but dose-ranging has not been conducted. The aim of this study was to establish the plasma mifepristone levels of patients from the MIPRA trial, along with the resultant steroid profiles, and compare these with those observed in mifepristone-treated mice using therapeutic schemes able to induce the regression of experimental mammary carcinomas with high PRA/PRB ratios: 6 mg pellets implanted subcutaneously, or daily doses of 12 mg/kg body weight. The plasma levels of mifepristone and other 19 plasma steroids were measured by liquid chromatography-tandem mass spectometry. In mifepristone-treated mice, plasma levels were lower than those registered in mifepristone-treated patients (i.e. day 7 after treatment initiation, pellet-treated mice: 8.4 ± 3.9 ng/mL; mifepristone-treated patients: 300.3 ± 31.7 ng/mL (mean ± s.d.; P < 0.001)). The increase in corticoid related steroids observed in patients was not observed in mifepristone-treated mice. The increase in progesterone levels was the most significant side effect detected in mifepristone-treated mice after 14 or 21 days of treatment, probably due to an ovarian compensatory effect not observed in postmenopausal patients. We conclude that in future clinical trials using mifepristone, the possibility of lowering the standard daily dose of 200 mg should be considered.


Assuntos
Neoplasias da Mama , Mifepristona , Humanos , Camundongos , Animais , Feminino , Mifepristona/uso terapêutico , Mifepristona/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores de Progesterona , Antagonistas de Hormônios/uso terapêutico , Antagonistas de Hormônios/farmacologia , Prognóstico
4.
Clin Transl Oncol ; 25(4): 1024-1032, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36376700

RESUMO

BACKGROUND: Triple-positive breast cancer (TPBC) is a tumor that simultaneously expresses estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Luminal A-like TPBC is a special subtype with a favorable prognosis but benefits less from HER2-targeted therapy. However, little is known about how to identify luminal A-like TPBCs. Therefore, our study aims to explore a clinically feasible method to identify luminal A-like TPBCs using immunohistochemical (IHC) markers. METHODS: Our cohort enrolled consecutive 190 patients with early-stage TPBCs diagnosed, treated and followed up in our hospital between 2013 and 2019. Patients whose IHC staining displayed ≥ 50% in both ER and PR scores and B-cell lymphoma 2 (BCL2) positivity were classified as cohort A (n = 64), and the rest were enrolled in cohort B (n = 126). Kaplan-Meier plotter and log-rank test were used to compare the survival difference between cohort A and cohort B and the efficacy of trastuzumab therapy in the two cohorts. RESULTS: The disease-free survival (DFS) of patients in cohort A was significantly better than in cohort B (p = 0.031). In cohort A, there was no statistically significant difference in DFS between patients treated with trastuzumab and those without trastuzumab (p = 0.663). While in cohort B, patients treated with trastuzumab had significantly better DFS than those without trastuzumab (p = 0.032). Multivariate survival analysis showed that cohort A was associated with better DFS(95%CI 1.046-11.776, p = 0.042). CONCLUSION: TPBCs consist of heterogeneous subtypes. Detecting the expression of ER, PR and BCL2 via IHC can help identify luminal A-like TPBCs. This study will enable individualized treatment of TPBCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Trastuzumab , Prognóstico , Receptores de Estrogênio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores de Progesterona/metabolismo , Biomarcadores Tumorais/metabolismo
5.
Rev. chil. obstet. ginecol. (En línea) ; 87(6): 404-411, dic. 2022. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1423742

RESUMO

En algunos estudios se ha asociado a la terapia de reemplazo hormonal (TRH) con estrógenos y progestinas a un mayor riesgo de cáncer de mama que la terapia con estrógenos solos. Sin embargo, dependiendo de su naturaleza algunas progestinas serían más seguras que otras. Se buscaron y analizaron artículos atingentes al tema en las bases de datos Google Scholar, PubMed, Science, SciELO y Cochrane, introduciendo los siguientes términos: terapia de reemplazo hormonal y cáncer de mama, progestinas y cáncer de mama, receptor de progesterona. Específicamente se ha asociado a las progestinas sintéticas acetato de medroxiprogesterona, noretisterona y levonorgestrel con un mayor riesgo de cáncer de mama, no así a la progesterona natural, a la progesterona oral micronizada ni a la didrogesterona. La progesterona natural, progesterona micronizada y didrogesterona serían más seguras en TRH para evitar el desarrollo de cáncer de mama, lo que estaría dado por la mayor especificidad en su acción.


In some studies, hormone replacement therapy (HRT) with estrogens and progestins has been associated with a higher risk of breast cancer than therapy with estrogens alone. However, depending on their nature, some progestins may be safer than others. This article analyzes the mode of action of progesterone in breast tissue and also the role of some progestins in the development of this pathology. Articles related to the subject were searched for and analyzed in Google Scholar, PubMed, Science, SciELO and Cochrane databases, introducing the following terms: hormone replacement therapy and breast cancer, progestins and breast cancer, progesterone receptor. Specifically, synthetic progestins medroxyprogesterone acetate, norethisterone, and levonorgestrel have been associated with an increased risk of breast cancer, but not natural progesterone, micronized oral progesterone, or dydrogesterone. Natural progesterone, micronized progesterone and dydrogesterone would be safer in HRT to prevent the development of breast cancer, which would be due to the greater specificity of their action.


Assuntos
Humanos , Feminino , Progestinas/efeitos adversos , Neoplasias da Mama/induzido quimicamente , Progestinas/classificação , Progestinas/fisiologia , Receptores de Progesterona , Medição de Risco , Terapia de Reposição Hormonal/efeitos adversos , Estrogênios/efeitos adversos
6.
Front Endocrinol (Lausanne) ; 13: 1037177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407312

RESUMO

Steroid hormone receptors (SHRs) belong to a large family of ligand-activated nuclear receptors that share certain characteristics and possess others that make them unique. It was thought for many years that the specificity of hormone response lay in the ligand. Although this may be true for pure agonists, the natural ligands as progesterone, corticosterone and cortisol present a broader effect by simultaneous activation of several SHRs. Moreover, SHRs share structural and functional characteristics that range from similarities between ligand-binding pockets to recognition of specific DNA sequences. These properties are clearly evident in progesterone (PR) and glucocorticoid receptors (GR); however, the biological responses triggered by each receptor in the presence of its ligand are different, and in some cases, even opposite. Thus, what confers the specificity of response to a given receptor is a long-standing topic of discussion that has not yet been unveiled. The levels of expression of each receptor, the differential interaction with coregulators, the chromatin accessibility as well as the DNA sequence of the target regions in the genome, are reliable sources of variability in hormone action that could explain the results obtained so far. Yet, to add further complexity to this scenario, it has been described that receptors can form heterocomplexes which can either compromise or potentiate the respective hormone-activated pathways with its possible impact on the pathological condition. In the present review, we summarized the state of the art of the functional cross-talk between PR and GR in breast cancer cells and we also discussed new paradigms of specificity in hormone action.


Assuntos
Neoplasias , Receptores de Progesterona , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Glucocorticoides/farmacologia , Ligantes , Progesterona/farmacologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Cells ; 11(12)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741094

RESUMO

The nuclear progesterone receptor (PR) is mainly known for its role as a ligand-regulated transcription factor. However, in the last ten years, this receptor's extranuclear or rapid actions have gained importance in the context of physiological and pathophysiological conditions such as cancer. The PR's polyproline (PXPP) motif allows protein-protein interaction through SH3 domains of several cytoplasmatic proteins, including the Src family kinases (SFKs). Among members of this family, cSrc is the most well-characterized protein in the scenario of rapid actions of the PR in cancer. Studies in breast cancer have provided the most detailed information on the signaling and effects triggered by the cSrc-PR interaction. Nevertheless, the study of this phenomenon and its consequences has been underestimated in other types of malignancies, especially those not associated with the reproductive system, such as glioblastomas (GBs). This review will provide a detailed analysis of the impact of the PR-cSrc interplay in the progression of some non-reproductive cancers, particularly, in GBs.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Neoplasias da Mama/metabolismo , Feminino , Humanos , Progesterona , Proteínas Tirosina Quinases/metabolismo , Receptores de Progesterona/metabolismo , Quinases da Família src/metabolismo
8.
Eur Thyroid J ; 11(2)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113037

RESUMO

Objective: A sharp increase in pediatric thyroid cancer incidence is observed during adolescence, driven mainly by girls. Differences in disease presentation across sexual maturity stages raise the question of whether sex steroids have a role in the heterogeneity. The aims of this study were to analyze the influence of puberty and sex on clinical presentation and prognosis and to evaluate the correlation between the expression of sex hormone receptors. Design and methods: Clinical records and immunohistochemical of specimens from 79 patients were analyzed. Puberty was analyzed by two criteria: end of puberty and beginning, in which the age of 10 was the cutoff. Results: Postpubertal were more frequently classified as having low-risk disease and a lower frequency of persistent disease, especially when the completion of puberty was used as the criteria. Male sex was associated with a higher risk of persistent disease at the end of the observation period. Estrogen receptor α positivity was low in the entire sample, while progesterone receptor positivity was positive in 30% of the cases. Female hormone receptor expression was not associated with sex, American Thyroid Association risk score, persistent structural disease, or pubertal status. Conclusion: Our study showed that the completion of puberty correlated best with the clinical behaviour of pediatric thyroid cancer. It was also shown that postpubertal patients have a less aggressive initial presentation and better outcomes. However, this observation could not be explained by the expression of estrogen and progesterone receptors in the primary tumors.

9.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018885

RESUMO

Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and PR), are major determinants in the development and progression of endometrial carcinomas, However, their precise mechanism of action and the role of other transcription factors involved are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment exposes a set of progestin-dependent PR binding sites which include both E2 and progestin target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled with ATAC-seq data showed that these regions, that we call 'progestin control regions' (PgCRs), exhibited an open chromatin state even before hormone exposure and were non-randomly associated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found to be altered during progression of endometrial cancer. Our findings suggest that endometrial response to progestins in differentiated endometrial tumor cells results in part from binding of PR together with PAX2 to accessible chromatin regions. What maintains these regions open remains to be studied.


Assuntos
Neoplasias do Endométrio , Receptores de Progesterona , Linhagem Celular Tumoral , Cromatina , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Fator de Transcrição PAX2/genética , Progesterona , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
10.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614002

RESUMO

Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.


Assuntos
Neoplasias , Pregnanolona , Humanos , Hormônios Esteroides Gonadais , Pregnanolona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA