Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(6): e0004624, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38775496

RESUMO

We identified a chromosomal qnrB19 gene within a transposon in a colistin-resistant Escherichia coli strain isolated from the stool sample of an Ecuadorian resident. This finding suggests a more stable acquisition of quinolone resistance on chromosomes than that on plasmids and the potential for propagation to other DNA structures.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36943338

RESUMO

A Gram-stain-negative strain, designated BR102T, isolated from a soil sample in Brazil was characterized by a polyphasic approach. Comparative 16S rRNA gene sequences indicated that strain BR102T belonged to the genus Citrobacter. The recN- and whole-genome-based phylogeny, and multilocus sequence analysis based on concatenated partial fusA, leuS, pyrG and rpoB sequences strongly supported a clade encompassing strain BR102T and a strain from public database that was distinct from currently recognized species of the genus Citrobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain BR102T and the closest relative Citrobacter freundii ATCC 8090T were 91.8 and 48.8 %, respectively. The ability to metabolize different compounds further discriminated strain BR102T from other closely related species of the genus Citrobacter. The novel variants bla CMY-179 and qnrB97, which encoded a CMY-2-like ß-lactamase and a QnrB-type protein, respectively, were identified in strain BR102T. BR102T was resistant to ampicillin, amoxicillin/clavulanate and cefoxitin. The DNA G+C content of strain BR102T is 51.3 mol%. Based on these results, strain BR102T represents a novel species of the genus Citrobacter, for which the name Citrobacter meridianamericanus sp. nov. is proposed. The type strain is BR102T (=MUM 22.55T=IMI 507229T).


Assuntos
Citrobacter , Genes Bacterianos , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , DNA Bacteriano/genética , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , Solo
3.
Antibiotics (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652626

RESUMO

The main objective of this study was to characterize using whole-genome sequencing analysis, a new variant of the qnrB gene (qnrB89) carried by a fluoroquinolone-susceptible bacterium isolated from mucus of farmed Salmo salar fingerling in Chile. Citrobacter gillenii FP75 was identified by using biochemical tests and 16S ribosomal gene analysis. Nucleotide and amino acid sequences of the qnrB89 gene exhibited an identity to qnrB of 81.24% and 91.59%, respectively. The genetic environment of qnrB89 was characterized by the upstream location of a sequence encoding for a protein containing a heavy metal-binding domain and a gene encoding for a N-acetylmuramoyl-L-alanine amidase protein, whereas downstream to qnrB89 gene were detected the csp and cspG genes, encoding cold-shock proteins. The qnrB89 gene was located on a large chromosomal contig of the FP75 genome and was not associated with the 10-kb plasmid and class 1 integron harbored by the FP75 strain. This study reports for the first time the carriage of a qnrB gene by the C. gillenii species, and its detection in a bacterial strain isolated from farmed salmon in Chile.

4.
J Chemother ; 33(2): 122-127, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357158

RESUMO

We investigated the phenotypic and molecular characteristics of Extended-Spectrum-ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates from four health-care institutions in Hermosillo, Sonora, Mexico. ESBL-producing isolates were collected from February to August 2016. The prevalence of ESBL-producing E. coli and K. pneumoniae was 11.9 and 8.7%, respectively. High dissemination of resistance to ciprofloxacin (88%), trimethoprim/sulfamethoxazole (72%) and aminoglycosides (59%) were detected, as well as susceptibility to meropenem, amikacin and tigecycline. The ESBL found variants were CTX-M-1 (88%) and CTX-M-9 (5%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6´)-Ib-cr was identified in 62% of a representative sample, whereas the qnrB and qnrS genes were detected in 49% of the isolates. PFGE analyses detected many unrelated clones among the hospital or community isolates. A constant programme of epidemiological surveillance is recommended to understand the dynamics of bacterial resistance to both cephalosporin as well as the fluoroquinolone family of antibiotics.


Assuntos
Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/biossíntese , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , México , Testes de Sensibilidade Microbiana , Fenótipo
5.
Front Vet Sci ; 7: 588919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330715

RESUMO

The aim of this work was to detect Escherichia coli isolates displaying resistance to oxyimino-cephalosporins, quinolones, and colistin in feces from livestock in Uruguay. During 2016-2019, fecal samples from 132 broiler and layer chicken flocks, 100 calves, and 50 pigs, were studied in Uruguay. Samples were cultured on MacConkey Agar plates supplemented with ciprofloxacin, ceftriaxone, or colistin. E. coli isolates were identified by mass spectrometry and antibiotic susceptibility testing was performed by disk diffusion agar method and colistin agar test. Antibiotic resistance genes were detected by polymerase chain reaction and sequencing. The most frequently detected resistance gene was qnrB19, recovered from 87 animals. Regarding plasmid-mediated quinolone resistance genes, qnrS1 was the second in prevalence (23 animals) followed by qnrE1, found in 6 chickens and two calves. Regarding resistance to oxyimino-cephalosporins, 8 different ß-lactamase genes were detected: bla CTX-M-8 and bla CMY-2 were found in 23 and 19 animals, respectively; next, bla CTX-M-2 and bla SHV-12 in 7 animals each, followed by bla CTX-M-14 in 5, bla CTX-M-15 and bla SHV2a in 2, and bla CTX-M-55 in a single animal. Finally, the mcr-1 gene was detected only in 8 pigs from a single farm, and in a chicken. Isolates carrying bla CMY-2 and bla SHV-12 were also found in these animals, including two isolates featuring the bla CMY-2/mcr-1 genotype. To the best of our knowledge, this is the first work in which the search for transferable resistance to highest priority critically important antibiotics for human health is carried out in chickens and pigs chains of production animals in Uruguay.

6.
Emerg Infect Dis ; 26(6): 1164-1173, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441616

RESUMO

Salmonella enterica serovar Paratyphi B variant Java sequence type 28 is prevalent in poultry and poultry meat. We investigated the evolutionary relatedness between sequence type 28 strains from Europe and Latin America using time-resolved phylogeny and principal component analysis. We sequenced isolates from Colombia, Guatemala, Costa Rica, and the Netherlands and complemented them with publicly available genomes from Europe, Africa, and the Middle East. Phylogenetic time trees and effective population sizes (Ne) showed separate clustering of strains from Latin America and Europe. The separation is estimated to have occurred during the 1980s. Ne of strains increased sharply in Europe around 1995 and in Latin America around 2005. Principal component analysis on noncore genes showed a clear distinction between strains from Europe and Latin America, whereas the plasmid gene content was similar. Regardless of the evolutionary separation, similar features of resistance to ß-lactams and quinolones/fluoroquinolones indicated parallel evolution of antimicrobial resistance in both regions.


Assuntos
Salmonella enterica , Salmonella paratyphi B , África , Animais , Antibacterianos/farmacologia , Colômbia , Costa Rica , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Europa (Continente)/epidemiologia , Guatemala , Indonésia , América Latina/epidemiologia , Oriente Médio , Países Baixos , Filogenia , Aves Domésticas , Salmonella enterica/genética , Salmonella paratyphi B/genética
8.
Front Microbiol ; 10: 2503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787939

RESUMO

Antimicrobial resistance is an increasing problem worldwide, and Salmonella spp. resistance to quinolone was classified by WHO in the high priority list. Recent studies in Europe and in the US reported the presence of small plasmids carrying quinolone resistance in Enterobacteriaceae isolated from poultry and poultry products. The aims of this study were to identify and characterize plasmid-mediated quinolone resistance in Salmonella spp. and to investigate transduction as a possible mechanism associated to its dissemination. First, we assessed resistance to nalidixic acid and/or ciprofloxacin in 64 Salmonella spp. and detected resistance in eight of them. Genomic analyses determined that six isolates of different serotypes and sources carried an identical 2.7-kb plasmid containing the gene qnrB19 which confers quinolone resistance. The plasmid detected also has high identity with plasmids reported in the US, Europe, and South America. The presence of similar plasmids was later surveyed by PCR in a local Salmonella collection (n = 113) obtained from diverse sources: food (eggs), wild and domestic animals (pigs, horse, chicken), and human clinical cases. qnrB19-carrying plasmids were found in 8/113 Salmonella tested strains. A bioinformatics analysis including Chilean and previously described plasmids revealed over 95.0% of nucleotide identity among all the sequences obtained in this study. Furthermore, we found that a qnrB19-carrying plasmid can be transferred between Salmonella of different serotypes through a P22-mediated transduction. Altogether our results demonstrate that plasmid-mediated quinolone resistance (PMQR) is widespread in Salmonella enterica of different serotypes isolated from human clinical samples, wild and domestic animals, and food in Chile and suggest that transduction could be a plausible mechanism for its dissemination. The occurrence of these antimicrobial resistance elements in Salmonella in a widespread area is of public health and food safety concern, and it indicates the need for increased surveillance for the presence of these plasmids in Salmonella strains and to assess their actual impact in the rise and spread of quinolone resistance.

9.
Front Microbiol ; 9: 1679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090095

RESUMO

The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum ß-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health.

10.
New Microbes New Infect ; 25: 49-51, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30090634

RESUMO

We describe the first detection of a KPC-2- and QnrB-producing Enterobacter cloacae from a patient with cystic fibrosis. The blaKPC-2 and qnrB-1 genes were located in a 79.8-kb plasmid. The presence of blaKPC-2 and qnrB-1 genes was determined by PCR and sequencing. Mobilization of plasmid containing blaKPC2 gene was assayed by conjugation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA