Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(4): 1873-1883, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38984866

RESUMO

Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.


Assuntos
Aminoácidos , Raízes de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Aminoácidos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal
2.
Plant Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918899

RESUMO

Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between two contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these two stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.

3.
J Exp Bot ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875460

RESUMO

Root hairs (RH) have become an important model system for studying plant growth and how plants modulate their growth in response to cell-intrinsic and environmental stimuli. Here, we will discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis thaliana RH in the interface between responses to environmental cues (e.g. nutrients such as nitrates, phosphate and microorganism) and hormonal stimuli (e.g. auxin). RH growth is under the control of several transcription factors that are also under strong regulation at different levels. In this review we highlight recent new discoveries along these transcriptional pathways that may increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We used text-mining capacities of the PlantConnectome database to generate the most updated view of RH growth in these complex biological contexts.

4.
Curr Opin Plant Biol ; 75: 102386, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352652

RESUMO

Plants exposed to freezing and above-freezing low temperatures must employ a variety of strategies to minimize fitness loss. There is a considerable knowledge gap regarding how mild low temperatures (around 10 °C) affect plant growth and developmental processes, even though the majority of the molecular mechanisms that plants use to adapt to extremely low temperatures are well understood. Root hairs (RH) have become a useful model system for studying how plants regulate their growth in response to both cell-intrinsic cues and environmental inputs. Here, we'll focus on recent advances in the molecular mechanisms underpinning Arabidopsis thaliana RH growth at mild low temperatures and how these discoveries may influence our understanding of nutrient sensing mechanisms by the roots. This highlights how intricately linked mechanisms are necessary for plant development to take place under specific circumstances and to produce a coherent response, even at the level of a single RH cell.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
5.
New Phytol ; 238(1): 169-185, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716782

RESUMO

Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Fosfotransferases/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/metabolismo
6.
Methods Mol Biol ; 2447: 185-192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583782

RESUMO

Ferroptosis is an oxidative iron-dependent cell death that was recently described in vertebrates, invertebrates, fungi, plants, and bacteria. In plants, ferroptosis has been reported in response to heat shock in roots of 6-day-old Arabidopsis thaliana seedlings. Generally, all biochemical and morphological ferroptosis hallmarks are conserved between animals and plants. Here, we describe a protocol to induce and quantify ferroptosis in plants based on the analysis of dead cells with a Sytox Green stain. Furthermore, heat shock induced cell death is prevented by using specific ferroptosis inhibitors.


Assuntos
Arabidopsis , Ferroptose , Animais , Arabidopsis/metabolismo , Morte Celular , Peroxidação de Lipídeos , Oxirredução , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628189

RESUMO

Root hair cells are important sensors of soil conditions. They grow towards and absorb water-soluble nutrients. This fast and oscillatory growth is mediated by continuous remodeling of the cell wall. Root hair cell walls contain polysaccharides and hydroxyproline-rich glycoproteins, including extensins (EXTs). Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either cell wall loosening or polymerization of cell wall components, such as Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-PRXs is unknown. Using genetic, biochemical, and modeling approaches, we identified and characterized three root-hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. prx01,44,73 triple mutation and PRX44 and PRX73 overexpression had opposite effects on root hair growth, peroxidase activity, and ROS production, with a clear impact on cell wall thickness. We use an EXT fluorescent reporter with contrasting levels of cell wall insolubilization in prx01,44,73 and PRX44-overexpressing background plants. In this study, we propose that PRX01, PRX44, and PRX73 control EXT-mediated cell wall properties during polar expansion of root hair cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Parede Celular , Peroxidases/genética , Raízes de Plantas/genética
8.
Ecotoxicol Environ Saf ; 225: 112713, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478983

RESUMO

Despite the important role played by nitric oxide (NO) in plants subjected to abiotic stress, NO donors application to induce drought tolerance in neotropical tree seedlings has not yet been tested. It is also worth investigating whether NO bioactivity in drought-stressed seedlings could be potentiated by NO donors nanoencapsulation. The aim of the current study is to evaluate the effects of chitosan nanoparticles (NPs) containing S-nitroso-mercaptosuccinic acid (S-nitroso-MSA) on drought-stressed seedlings of neotropical tree species Heliocarpus popayanensis Kunth in comparison to free NO donor and NPs loaded with non-nitrosated MSA. Nanoencapsulation slowed down NO release from S-nitroso-MSA, and nanoencapsulated S-nitroso-MSA yielded 2- and 1.6-fold higher S-nitrosothiol levels in H. popayanensis roots and leaves, respectively, than the free NO donor. S-nitroso-MSA has prevented drought-induced CO2 assimilation inhibition, regardless of nanoencapsulation, but the nanoencapsulated NO donor has induced earlier ameliorative effect. Both NO and MSA have decreased oxidative stress in H. popayanensis roots, but this effect was not associated with antioxidant enzyme induction, with higher seedling biomass, or with proline and glycine betaine accumulation. Nanoencapsulated S-nitroso-MSA was the only formulation capable of increasing leaf relative water content in drought-stressed plants (from 32.3% to 60.5%). In addition, it induced root hair formation (increase by 36.6% in comparison to well-hydrated plants). Overall, results have evidenced that nanoencapsulation was capable of improving the protective effect of S-nitroso-MSA on H. popayanensis seedlings subjected to drought stress, a fact that highlighted the potential application of NO-releasing NPs to obtain drought-tolerant tree seedlings for reforestation programs.


Assuntos
Quitosana , Plântula , Secas , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Fotossíntese , Folhas de Planta
9.
Ann Bot ; 128(4): 431-440, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309655

RESUMO

BACKGROUND AND AIMS: Root proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition. METHODS: Near-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg-1 soil. RESULTS: Both WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients. CONCLUSIONS: In addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.


Assuntos
Fósforo , Zea mays , Nutrientes , Raízes de Plantas , Solo
10.
Plant Signal Behav ; 16(8): 1920191, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33944666

RESUMO

Plant long noncoding RNAs (lncRNAs) are key chromatin dynamics regulators, directing the transcriptional programs driving a wide variety of developmental outputs. Recently, we uncovered how the lncRNA AUXIN REGULATED PROMOTER LOOP (APOLO) directly recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) modulating its transcriptional activation and leading to low temperature-induced RH elongation. We further demonstrated that APOLO interacts with the transcription factor WRKY42 in a novel ribonucleoprotein complex shaping RHD6 epigenetic environment and integrating signals governing RH growth and development. In this work, we expand this model showing that APOLO is able to bind and positively control the expression of several cell wall EXTENSIN (EXT) encoding genes, including EXT3, a key regulator for RH growth. Interestingly, EXT3 emerged as a novel common target of APOLO and WRKY42. Furthermore, we showed that the ROS homeostasis-related gene NADPH OXIDASE C (NOXC) is deregulated upon APOLO overexpression, likely through the RHD6-RSL4 pathway, and that NOXC is required for low temperature-dependent enhancement of RH growth. Collectively, our results uncover an intricate regulatory network involving the APOLO/WRKY42 hub in the control of master and effector genes during RH development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proliferação de Células , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicoproteínas/genética , Glicoproteínas/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Desenvolvimento Vegetal/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA