Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35012231

RESUMO

Biodiesel production from first-generation feedstock has shown a strong correlation with the increase in deforestation and the necessity of larger areas for land farming. Recent estimation from the European Federation for Transport and Environment evidenced that since the 2000s decade, an area equal to the Netherlands was deforested to supply global biodiesel demand, mainly originating from first-generation feedstock. Nevertheless, biodiesel is renewable, and it can be a greener source of energy than petroleum. A promising approach to make biodiesel independent from large areas of farming is to shift as much as possible the biodiesel production chain to second and third generations of feedstock. The second generation presents three main advantages, where it does not compete with the food industry, its commercial value is negligible, or none, and its usage as feedstock for biodiesel production reduces the overall waste disposal. In this manuscript, we present an oligomeric catalyst designed to be multi-functional for second-generation feedstock transesterification reactions, mainly focusing our efforts to optimize the conversion of tallow fat and sauteing oil to FAME and FAEE, applying our innovative catalyst. Named as Oligocat, our catalyst acts as a Brønsted-Lowry acid catalyst, providing protons to the reaction medium, and at the same time, with the course of the reaction, it sequesters glycerol molecules from the medium and changes its physical phase during the transesterification reaction. With this set of properties, Oligocat presents a pseudo-homogenous behavior, reducing the purification and separation steps of the biodiesel process production. Reaction conditions were optimized applying a 42 factorial planning. The output parameter evaluated was the conversion rate of triacylglycerol to mono alkyl esters, measured through gel permeation chromatography (GPC). After the optimization studies, a conversion yield of 96.7 (±1.9) wt% was achieved, which allows classifying the obtained mono alkyl esters as biodiesel by ASTM D6751 or EN 14214:2003. After applying the catalyst in three reaction cycles, Oligocat still presented a conversion rate above 96.5 wt% and as well an excellent recovery rate.

2.
Polymers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012043

RESUMO

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol-1 (Mw) and 3909 g·mol-1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical-chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA