Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 26(2): 276-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441733

RESUMO

The present study aims to characterize and to evaluate the biological effects of a skin dressing manufactured with the organic part of the Chondrilla caribensis marine sponge (called spongin-like collagen (SC)) associated or not to photobiomodulation (PBM) on the skin wound healing of rats. Skin dressings were manufactured with SC and it was characterized using scanning electron microscopy (SEM) and a tensile assay. In order to evaluate its biological effects, an experimental model of cutaneous wounds was surgically performed. Eighteen rats were randomly distributed into three experimental groups: control group (CG): animals with skin wounds but without any treatment; marine collagen dressing group (DG): animals with skin wounds treated with marine collagen dressing; and the marine collagen dressing + PBM group (DPG): animals with skin wounds treated with marine collagen dressing and PBM. Histopathological, histomorphometric, and immunohistochemical evaluations (qualitative and semiquantitative) of COX2, TGFß, FGF, and VEGF were done. SEM demonstrates that the marine collagen dressing presented pores and interconnected fibers and adequate mechanical strength. Furthermore, in the microscopic analysis, an incomplete reepithelialization and the presence of granulation tissue with inflammatory infiltrate were observed in all experimental groups. In addition, foreign body was identified in the DG and DPG. COX2, TGFß, FGF, and VEGF immunostaining was observed predominantly in the wound area of all experimental groups, with a statistically significant difference for FGF immunostaining score of DPG in relation to CG. The marine collagen dressing presented adequate physical characteristics and its association with PBM presented favorable biological effects to the skin repair process.


Assuntos
Bandagens , Colágeno , Poríferos , Pele , Cicatrização , Animais , Cicatrização/efeitos da radiação , Ratos , Colágeno/metabolismo , Pele/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Resistência à Tração , Fatores de Crescimento de Fibroblastos/metabolismo , Microscopia Eletrônica de Varredura
2.
Int J Pharm X ; 5: 100175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36950662

RESUMO

Electrospun chitosan nanofibers (QSNFs) enhance the healing process by mimicking skin structure and function. The aim of this study was to analyze the therapeutic effects of QSNFs application on animal skin wounds to identify a potential direction for translational research in dermatology. The PRISMA methodology and the PICO scheme were used. A random effects model and mean difference analysis were applied for the meta-analysis. A meta-regression model was constructed, risk of bias was determined, and methodological quality assessment was performed. Of the 2370 articles collected, 54 studies were selected based on the inclusion and exclusion criteria. The wound healing area was used for building models on the 3rd, 7th, and 14th days of follow-up; the results were - 10.4% (95% CI, -18.2% to -2.6%, p = 0.001), -21.0% (95% CI, -27.3% to -14.7%, p = 0.001), and - 14.0% (95% CI, -19.1 to -8.8%, p = 0.001), respectively. Antioxidants and synthetic polymers combined with QSNFs further reduced skin wound areas (p < 0.05). The results show a more efficient reduction in wound area percentages in experimental groups than in control groups, so QSNFs could potentially be applied in translational human medicine research.

3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835248

RESUMO

Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.


Assuntos
Anti-Inflamatórios , Ácido Glicirrízico , Cicatrização , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Tecido de Granulação/metabolismo , Ratos Wistar , Pele/metabolismo , Cicatrização/efeitos dos fármacos
4.
J Biomed Mater Res B Appl Biomater ; 111(7): 1419-1433, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36840674

RESUMO

Wound dressings are one of the most used treatments for chronic wounds. Moreover, 3D printing has been emerging as a promising strategy for printing 3D printed wound constructs, being able of manufacturing multi layers, with a solid 3D structure. Although all these promising effects of 3D printed wound constructs, there is still few studies and limited understanding of the interaction of these dressings with skin tissue and their effect on the process of skin wound healing. In this context, the aim of this work was to perform a systematic review of the literature to examine the effects of 3D printed wound constructs on the process of skin wound healing in animal models. The articles were selected from three databases following Medical Subject Headings (MeSH) descriptors "3D printing," "skin," "wound," and "in vivo." After the selection, exclusion and inclusion criteria, nine articles were analyzed. This review confirms the significant benefits of using 3D printed wound constructs for skin repair and regeneration. All the used inks demonstrated the ability of mimicking the structure of skin tissue and promoting cell adhesion, proliferation, migration, and mobility. Furthermore, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.


Assuntos
Pele , Engenharia Tecidual , Animais , Modelos Animais , Adesão Celular , Impressão Tridimensional
5.
Antioxidants (Basel) ; 11(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358560

RESUMO

Skin wound healing is a complex process that requires the mutual work of cellular and molecular agents to promote tissue restoration. In order to improve such a process, especially in cases of impaired healing (e.g., diabetic ulcer, chronic wounds), there is a search for substances with healing properties and low toxicity: two features that some natural products-such as the bee product named propolis-exhibit. Propolis is a resinous substance obtained from plant resins and exudates with antioxidant, anti-inflammatory, and antitumoral activities, among other biological ones. Based on the previously reported healing actions of different types of propolis, the Brazilian red propolis (BRP) was tested for this matter. A skin wound excision model in male Wistar rats was performed using two topical formulations with 1% red propolis as treatments: hydroalcoholic extract and Paste. Macroscopical, histological and immunohistochemical analysis were performed, revealing that red propolis enhanced wound contraction, epithelialization, reduced crust formation, and modulated the distribution of healing associated factors, mainly collagen I, collagen III, MMP-9, TGF-ß3 and VEGF. Biochemical analysis with the antioxidants SOD, MPO, GSH and GR showed that propolis acts similarly to the positive control, collagenase, increasing these molecules' activity. These results suggest that BRP promotes enhanced wound healing by modulating growth factors and antioxidant molecules related to cutaneous wound healing.

6.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235058

RESUMO

Wounds represent a medical problem that contributes importantly to patient morbidity and to healthcare costs in several pathologies. In Hidalgo, Mexico, the Bacopa procumbens plant has been traditionally used for wound-healing care for several generations; in vitro and in vivo experiments were designed to evaluate the effects of bioactive compounds obtained from a B. procumbens aqueous fraction and to determine the key pathways involved in wound regeneration. Bioactive compounds were characterized by HPLC/QTOF-MS, and proliferation, migration, adhesion, and differentiation studies were conducted on NIH/3T3 fibroblasts. Polyphenolic compounds from Bacopa procumbens (PB) regulated proliferation and cell adhesion; enhanced migration, reducing the artificial scratch area; and modulated cell differentiation. PB compounds were included in a hydrogel for topical administration in a rat excision wound model. Histological, histochemical, and mechanical analyses showed that PB treatment accelerates wound closure in at least 48 h and reduces inflammation, increasing cell proliferation and deposition and organization of collagen at earlier times. These changes resulted in the formation of a scar with better tensile properties. Immunohistochemistry and RT-PCR molecular analyses demonstrated that treatment induces (i) overexpression of transforming growth factor beta (TGF-ß) and (ii) the phosphorylation of Smad2/3 and ERK1/2, suggesting the central role of some PB compounds to enhance wound healing, modulating TGF-ß activation.


Assuntos
Bacopa , Plantaginaceae , Animais , Colágeno/metabolismo , Fibroblastos , Hidrogéis/farmacologia , Ratos , Pele , Fator de Crescimento Transformador beta/metabolismo , Cicatrização
7.
Pharmaceutics ; 14(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145602

RESUMO

Herein, we report the synthesis of Au nanoparticles (AuNPs) in chitosan (CTS) solution by chemically reducing HAuCl4. CTS was further functionalized with glycidyl methacrylate (chitosan-g-glycidyl methacrylate/AuNP, CTS-g-GMA/AuNP) to improve the mechanical properties for cellular regeneration requirements of CTS-g-GMA/AuNP. Our nanocomposites promote excellent cellular viability and have a positive effect on cytokine regulation in the inflammatory and anti-inflammatory response of skin cells. After 40 days of nanocomposite exposure to a skin wound, we showed that our films have a greater skin wound healing capacity than a commercial film (TheraForm®), and the presence of the collagen allows better cosmetic ave aspects in skin regeneration in comparison with a nanocomposite with an absence of this protein. Electrical percolation phenomena in such nanocomposites were used as guiding tools for the best nanocomposite performance. Our results suggest that chitosan-based Au nanocomposites show great potential for skin wound repair.

8.
Acta sci. vet. (Impr.) ; 50(suppl.1): Pub.739-4 jan. 2022. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1458547

RESUMO

Background: Snakebites are the main responsible for envenoming in dogs and the bothropic venom remains the mostcommon in Brazil, which can induce a necrotic skin wound. Hyperbaric oxygen therapy (HBOT) use 100% oxygen underhigh pressure and used to treat different wounds in human patients. To the authors’ knowledge, no reports regarding to usethe HBOT in skin wound caused by snakebite (Bothrops jararaca) are present in the literature. The present clinical caseaimed to describe the use of HBOT for the treatment of an extensive necrotic wound caused by jararaca snakebite in a dog.Case: A neutered 8-year-old mixed-breed dog, weighing 12 kg, was admitted with a 7-day history of extensive necroticwound was identified in the face and neck causing by a snakebite, and no sign of pain. The procedure of HBOT (singlesessions of 1.5 ATM, 45 min, repeated every 48 h, up to 12 sessions) was decided, and the complete blood cells, alanineaminotransferase, creatinine, creatine kinase, prothrombin time, activated partial thromboplastin time, wound clinicalevaluation were measured at the following time-points: 2nd, 5th, 10th, and 12th sessions. At the 5th session was identifiedleukopenia, neutropenia and lymphopenia. Wound re-epithelialization was initiated after the 5th session, and the completeepithelialization was identified at the 12th session of HBOT. During the HBOT no side effects were identified. Threemonths after the HBOT finished, the animal returned to the clinic and the clinical status evolved positively, and the woundwas completed healed.Discussion: This report described the treatment of an extensive necrotic skin wound caused by snakebite (Bothrops jararaca)in an 8-year-old, neutered, mixed-breed dog using the HBOT. The wound healing...


Assuntos
Animais , Cães , Cicatrização , Necrose/veterinária , Oxigenoterapia Hiperbárica/métodos , Oxigenoterapia Hiperbárica/veterinária , Venenos de Crotalídeos/antagonistas & inibidores , Bothrops
9.
Acta sci. vet. (Online) ; 50(suppl.1): Pub. 739, Jan. 17, 2022. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-32962

RESUMO

Background: Snakebites are the main responsible for envenoming in dogs and the bothropic venom remains the mostcommon in Brazil, which can induce a necrotic skin wound. Hyperbaric oxygen therapy (HBOT) use 100% oxygen underhigh pressure and used to treat different wounds in human patients. To the authors knowledge, no reports regarding to usethe HBOT in skin wound caused by snakebite (Bothrops jararaca) are present in the literature. The present clinical caseaimed to describe the use of HBOT for the treatment of an extensive necrotic wound caused by jararaca snakebite in a dog.Case: A neutered 8-year-old mixed-breed dog, weighing 12 kg, was admitted with a 7-day history of extensive necroticwound was identified in the face and neck causing by a snakebite, and no sign of pain. The procedure of HBOT (singlesessions of 1.5 ATM, 45 min, repeated every 48 h, up to 12 sessions) was decided, and the complete blood cells, alanineaminotransferase, creatinine, creatine kinase, prothrombin time, activated partial thromboplastin time, wound clinicalevaluation were measured at the following time-points: 2nd, 5th, 10th, and 12th sessions. At the 5th session was identifiedleukopenia, neutropenia and lymphopenia. Wound re-epithelialization was initiated after the 5th session, and the completeepithelialization was identified at the 12th session of HBOT. During the HBOT no side effects were identified. Threemonths after the HBOT finished, the animal returned to the clinic and the clinical status evolved positively, and the woundwas completed healed.Discussion: This report described the treatment of an extensive necrotic skin wound caused by snakebite (Bothrops jararaca)in an 8-year-old, neutered, mixed-breed dog using the HBOT. The wound healing...(AU)


Assuntos
Animais , Cães , Venenos de Crotalídeos/antagonistas & inibidores , Necrose/veterinária , Oxigenoterapia Hiperbárica/métodos , Oxigenoterapia Hiperbárica/veterinária , Cicatrização , Bothrops
10.
Acta cir. bras ; 37(9): e370902, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1402980

RESUMO

Purpose: To investigate the active ingredients of walnut ointment (WO) and its mechanism in repairing wounds. Methods: The ingredients of WO were detected by gas chromatography­mass spectrometry. The effect of linoleic acid (LA) was tested by in vitro Alamar Blue (AB) reagent. Image J software, histological and immunohistochemical analysis were used to confirm the healing effect of LA in the porcine skin model. The animals were euthanized after the experiment by injection of pentobarbital sodium. Results: LA, 24% in WO, promotes keratinocytes and fibroblasts proliferation, which were 50.09% and 15.07% respectively higher than control (p < 0.05). The healing rate of the LA group (96.02% ± 2%, 98.58% ± 0.78%) was higher than the saline group (82.11% ± 3.37%, 88.72% ± 1.73%) at week 3 and week 4 (p < 0.05). The epidermal thickness of the LA was 0.16 ± 0.04 mm greater and the expression of the P63 and CK10 proteins was stronger in the LA group than the control (p < 0.05). Conclusions: LA, which is the main components in WO can promote full-thickness burning wounds (FBWs) by stimulating cell proliferation and differentiation.


Assuntos
Pomadas/química , Cicatrização/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Ácido Linoleico/uso terapêutico , Nozes/química , Queimaduras/terapia , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA