Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33544, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040403

RESUMO

AÒ«ai fruit is characterized by the properties of its bioactive compounds; however, this fruit is highly perishable and its compounds are sensitive when exposed to non-optimal environmental factors. Therefore, the objective of this study was to encapsulate the fruit pulp by spray drying to improve the nutritional value and extend the shelf life of the products derived from acai fruit. Maltodextrin was used as a wall material and the process was optimized to obtain the desirable values of the response variables. For this, a central compound design (CCD) was developed to determine the influence of temperature (110-170 °C) and the wall material proportion (5-15 %) on dependent variables: the retention of ascorbic acid, moisture percentage, hygroscopicity, solubility, water activity, and yield. Furthermore, the effects of spray drying on bioactive compounds (AA, TPC, TFC, TA, TCC, GA, CT, and QC) and antioxidant activity (ABTS, DPPH, and ORAC) were evaluated. The maximum design temperature (170 °C) and wall material proportion (15 %) significantly influenced the response variables where encapsulation was applied, with high ascorbic acid retention (96.886 %), low moisture (0.303 %), low hygroscopicity (7.279 g/100 g), low level of water activity (0.255), a water solubility index of 23.206 %, and a high yield of 70.285 %. The bioactive compounds analyzed and the antioxidant capacity presented significant retention values for AA (96.86 %), TPC (65.13 %), TFC (82.09 %), TA (62.46 %), TCC (7.28 %), GA (35.02 %), CT (49.03 %), QC (37.57 %), ABTS (81.24 %), DPPH (75.11 %), and ORAC (15.68 %). Therefore, it is concluded that the powder obtained under these conditions has desirable physical properties, and the drying process preserved a notable retention of bioactive compounds and their antioxidant activities.

2.
Int J Biol Macromol ; 277(Pt 1): 133754, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084984

RESUMO

Hibiscus extract exhibits considerable antioxidant activity and a high anthocyanin content, which suggesting potential health benefits. However, these compounds are highly susceptible to environmental factors. The aim of this study was to establish the optimal conditions for the encapsulation of Hibiscus sabdariffa extract (HSE) using mixed porous maize starch-gum Arabic to enhance the stability of bioactive compounds under accelerated aging conditions. Response surface methodology (RSM) was used to optimize microencapsulation conditions through spray drying. The optimal conditions for microencapsulation of HSE by RSM were determined to be 126 °C at the inlet temperature (IT) and 8.5 % at the total solid content (TSC). Using these conditions, the amount of bioactive compounds in optimized microcapsules (OMs) was 2368 mg GAE/100 g, 694 mg QE/100 g, and 930 mg EC3G/100 g, of phenolic compounds, flavonoids, and anthocyanin, respectively. The release rate of anthocyanins during in vitro digestion was more effectively regulated in the OM sample, which retained up to 40 % of anthocyanins compared with 10 % in the HSE. The experimental values in this study exhibit high assertiveness, which renders the optimization model technologically and financially viable for the encapsulation of bioactive compounds with potential use in the food and pharmaceutical industries.


Assuntos
Antocianinas , Composição de Medicamentos , Goma Arábica , Hibiscus , Extratos Vegetais , Amido , Hibiscus/química , Amido/química , Goma Arábica/química , Extratos Vegetais/química , Porosidade , Antocianinas/química , Cápsulas , Antioxidantes/química , Antioxidantes/farmacologia , Trato Gastrointestinal/metabolismo , Estabilidade de Medicamentos
3.
Int J Biol Macromol ; 274(Pt 1): 133039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866285

RESUMO

Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTS•+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.


Assuntos
Alginatos , Antioxidantes , Quitosana , Cimenos , Emulsões , Polissacarídeos , Pós , Quitosana/química , Antioxidantes/química , Antioxidantes/farmacologia , Cimenos/química , Alginatos/química , Emulsões/química , Polissacarídeos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
4.
CienciaUAT ; 18(2): 145-154, ene.-jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569027

RESUMO

Resumen: Los cormos de malanga son tallos subterráneos con alto valor nutrimental por su contenido de carbohidratos y proteínas, además de ser altamente digestivos. El almidón que se extrae de ellos puede ser utilizado en la encapsulación de microorganismos probióticos, de gran importancia para la salud. El objetivo de este trabajo fue desarrollar un suplemento alimenticio con características funcionales, usando bacterias ácido lácticas (BAL) (Lactobacilos casei), encapsuladas en almidón de malanga (Xanthosoma sagittifolium). El suplemento se realizó mezclando 150 mL de pulpa de fruta cocida (mango o manzana) con 400 mL de suero de leche (pH de 6.0), a 45 ± 1 °C, hasta conseguir la consistencia deseada (449.9 mPas/s a una temperatura de 25 ºC). Posteriormente, se adicionaron 1 % o 2 % de almidón de malanga (p/v) y 10 mL de cultivo probiótico por cada 100 mL de mezcla. Se deshidrató a 80 ºC y 150 ºC con flujo de aire de 20 mL/min para manzana y 8 mL/min para mango mediante secado por aspersión. El rendimiento fue de 12 %, con una viabilidad de las BAL en el suplemento deshidratado a los 3 meses de almacenamiento superior a 1 x 108 UFC/g. La ausencia de bacterias coliformes, así como de salmonella y shigella, indican que los suplementos son inocuos y aptos para consumo. La composición nutrimental del suplemento de manzana obtenido fue2.23 % de fibra, 5.93 % de grasa, 4.95 % de proteína y un 79 % de hidratos de carbono; el suplemento de mango, el contenido fue 0.59 % de fibra, 7.6 % de grasa, 4.2 % de proteína y 80.20 % de hidratos de carbono. El almidón de malanga permitió la microencapsulación de las BAL y mantener su viabilidad durante el almacenamiento de los suplementos alimenticios desarrollados con base en suero de leche y fruta.


Abstract: Malanga corms are an underground stem with a high nutritional value as it contains carbohydrates and proteins, in addition to being highly digestive; The starch extracted from them can be used in the encapsulation of probiotic microorganisms, which are of great importance for human health. The objective of this work was to develop a food supplement with functional characteristics, added with lactic acid bacteria (Lactobacillus casei) (LAB), using malanga (Xanthosoma sagittifolium) starch. The supplement was obtained by mixing 150 mL of cooked fruit pulp (mango or apple) with 400 mL of sweet whey (pH of 6.0), at a temperature of 45 ± 1 °C until the desired consistency (449.9 mPas/s at a temperature of 25 °C) was achieved. Subsequently, 1 % or 2 % of malanga starch (p/v) and 10 mL of probiotic cultures were added per each 100 mL of mixture. it was then dehydrated at 80 ºC and 150 °C with an air flow of 20 mL/min for apple and 8 mL/min for mango by spray drying. The yield was 12 %, with viability of LAB in the dehydrated supplement at 3 months of storage higher than 1 x 108 CFU/g. The absence of coliform bacteria, as well as Salmonella and Shigella, indicate that the supplements are safe and suitable for consumption. The nutritional composition of the apple supplement was 2.23 % fiber, 5.93 % fat, 4.95 % protein and 79 % carbohydrates; the mango supplement content was 0.59 % fiber, 7.6 % fat, 4.2 % protein and 80.20 % carbohydrates. The malanga starch allowed the LAB microencapsulation and the maintenance of their viability during the storage of sweet whey and fruit-based food supplements.

5.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731696

RESUMO

Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein-fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage.

6.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611310

RESUMO

The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find them together in a processed food product. This could lead to healthier and more functional food products, which may have positive implications for consumer health and well-being. This work aimed to fortify a model burger manufactured with fillets of an Amazonian fish (boquichico, Prochilodus nigricans) by adding microencapsulated sacha inchi oil (Plukenetia volubilis, rich in ALA) (MSIO) produced by spray-drying. MSIO was incorporated into the burgers at different levels (0, 3, 4, 5, and 6%). The burgers were characterized by their proximal composition, cooking losses, texture profile, lipid oxidation, sensory profile, overall liking, and fatty acid profile. The results showed that adding MSIO up to concentrations of 5% or 6% increased the instrumental hardness, chewiness, and lipid oxidation in the burgers. However, fortifying the burgers with 3% MSIO was possible without affecting the burgers' sensory properties and overall liking. Regarding the fatty acid profile, the burgers with 3% MSIO had a higher content of polyunsaturated fatty acids, with the ALA, EPA, and DHA types of fatty acids. Therefore, we recommend using this fortification concentration, but future studies should be carried out to improve the oxidative stability of MSIO and the burgers.

7.
Foods ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611307

RESUMO

Bioactive compounds from medicinal plants have applications in the development of functional foods. However, since they are unstable, encapsulation is used as a conservation alternative. This work aimed to assess the bioactive properties (antioxidant and hypoglycemic) of different extracts, including the infusion, as well as their spray-dried microencapsulates from Tecoma stans leaves. A factorial design was proposed to determine the best extraction conditions, based on ABTS and DPPH inhibition. Maltodextrin (MD), arabic gum (AG), and a 1:1 blend (MD:AG) were used as encapsulating agents. Moreover, characterization through physicochemical properties, gas chromatography/mass spectrometry (GC-MS) and scanning electron microscopy (SEM) of the best two powders based on the bioactive properties were analyzed. The results showed that the combination of stirring, water, and 5 min provided the highest inhibition to ABTS and DPPH (35.64 ± 1.25 mg Trolox/g d.s. and 2.77 ± 0.01 g Trolox/g d.s., respectively). Spray drying decreased the antioxidant activity of the extract while preserving it in the infusion. The encapsulated infusion with MD:AG had the highest hypoglycemic activity as it presented the lowest glycemic index (GI = 47). According to the results, the microencapsulates could potentially be added in foods to enhance nutritional quality and prevent/treat ailments.

8.
Food Res Int ; 180: 114090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395563

RESUMO

There is a growing demand for the food industry to find appealing matrices that display a clean and sustainable label capable of replacing animal proteins in the encapsulation market for natural pigments. Therefore, this study evaluated the impact of enzymatic hydrolysis by Flavourzyme protease on the encapsulation properties of rice bran proteins, aiming to protect anthocyanins in grape juice microparticles. To achieve this, rice bran protein hydrolysates (RPH) with low (5%, LRPH), medium (10%, MRPH), and high (15%, HRPH) degrees of hydrolysis (DH) were used combined with maltodextrin as carrier agents for the microencapsulation of grape juice by spray drying. The feed solutions contained 1 g of carrier agents (CA)/g of soluble solids from the juice (SS) and protein: a 15% CA ratio. Non-hydrolyzed rice protein was used as a carrier agent to obtain a control sample to evaluate the effect of enzymatic hydrolysis on the microencapsulation of grape juice. Protein modification increased the surface activity of the protein and its ability to migrate to the surface of the microparticles, forming a protective film, as observed by X-ray photoelectron spectroscopy. Using HRPH as a carrier agent combined with maltodextrin improved the internal and total anthocyanin retention, antioxidant capacity measured by DPPH and ABTS+ assays, and powder recovery compared to the control sample, and increased DH reduced particle size and powder stickiness. These particles were more homogeneous, rough, and without cracks. The microencapsulation efficiency was above 70%. All powders exhibited low values of hygroscopicity and degree of caking. Therefore, enzymatic hydrolysis proves to be a promising alternative for improving rice bran protein's encapsulating properties since using RPH as an encapsulating agent conferred greater protection of anthocyanins in microparticles. Moreover, the HRPH sample exhibited the most favorable outcomes overall, indicating its potential for prospective utilization in the market, supported by its elevated Tg.


Assuntos
Oryza , Vitis , Animais , Antocianinas/química , Oryza/química , Hidrólise , Pós , Estudos Prospectivos
9.
Food Res Int ; 176: 113820, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163723

RESUMO

Camu-camu (Myrciaria dubia) is a tropical fruit known for its content of bioactive compounds. This study aimed to evaluate physicochemically, morphologically, andsensorialpowders from camu-camu obtained by spray-drying at two inlet temperatures (150 °C and 180 °C) with three encapsulating agents (maltodextrin, whey protein and a 50:50 mixture of both) and by freeze-drying of whole fruit. The use of maltodextrin protected bet anthocyanins (cyanidin-3-glucoside (C3G) and delphinidin-3-glucoside (D3G)), but whey protein showed a better protective effect on ascorbic and malic acids. These facts were confirmed during the storage stability test, finding that relative humidity is a critical variable in preserving the bioactive compounds of camu-camu powders. The powders with the highest content of bioactive compounds were added to a yogurt and a white grape juice, and then sensory evaluated. The bioaccessibility studies in gastric and intestinal phases showed better recovery percentages of bioactive compounds in camu-camu powders (up to 60.8 %) and beverages (up to 90 %) for C3G, D3G, ascorbic acid, and malic acid than in the fruit juice. Dehydration of camu-camu (M. dubia) is a strategy to increase the bioactive compounds stability, modulate the fruit sensory properties, and improve their bioavailability after incorporation in food matrices.


Assuntos
Antocianinas , Myrtaceae , Antocianinas/química , Pós , Proteínas do Soro do Leite , Ácido Ascórbico/análise , Antioxidantes , Myrtaceae/química
10.
Ciênc. rural (Online) ; 54(1): e20220317, 2024. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1447955

RESUMO

The cheese after processing, generates whey, which is a residue that has potential benefit to human health. However, there are still few studies that seek to evaluate the composition and potential benefits of goat milk whey, even though it is a promising dairy source. Despite this, the large-scale generation of this waste can favor the environmental impact when improperly disposed of. Given this, the use of all content of dairy production can reverse this impact and increase the income of the dairy industry. Thus, this research prepared a powdered product based on goat's milk whey from the spray drying technique and evaluate its physicochemical composition by chemical analytical methods and protein profile through polyacrylamide gel electrophoresis. The elaborated product had a higher carbohydrate content than protein, and the identification of protein fractions showed that the most expressive bands represented beta-lactoglobulin and alpha-lactoalbumin. Therefore, the elaborated product has the potential to generate novel products for human consumption and with potential health benefits.


O queijo após processado gera o soro de leite, sendo este um resíduo que possui potencial benefício à saúde humana. No entanto, ainda são poucos os estudos que buscam avaliar a composição e os potenciais benefícios do soro de leite de cabra, mesmo esta sendo uma fonte láctea promissora. Apesar disso, a geração em larga escala deste resíduo pode favorecer o impacto ambiental quando descartado inadequadamente. Em vista disso, a utilização de todo conteúdo gerado na produção de lácteos pode reverter este impacto e aumentar o rendimento da indústria de laticínios. Diante disso, é importante buscar o desenvolvimento de novos produtos para favorecer a redução do impacto gerado. Assim, este trabalho teve como objetivo elaborar um produto em pó, à base de soro de leite de cabra a partir da secagem pela técnica de spray drying e avaliar sua composição físico-química por métodos químicos analíticos e perfil proteico através da eletroforese em gel de poliacrilamida. O produto elaborado apresentou maior teor de carboidratos do que proteína, e a identificação das frações proteicas mostrou que as bandas mais expressivas representavam beta-lactoglobulina e alfa-lactoalbumina. Portanto, o produto elaborado apresenta potencial para geração de novos produtos para consumo humano e com prováveis benefícios à saúde.


Assuntos
Cabras , Laticínios , Soro do Leite , Resíduos de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA