Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125669

RESUMO

Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Nanopartículas , Dióxido de Silício , Nanomedicina Teranóstica , Dióxido de Silício/química , Animais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Nanomedicina Teranóstica/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Meios de Contraste/química , Gadolínio/química , Porosidade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cancer Policy ; 40: 100471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556128

RESUMO

BACKGROUND: For cancer patient populations worldwide, the synchronous scale-up of diagnostics and treatments yields meaningful gains in survival and quality of life. Among advanced cancer therapies, radiotherapy (RT) and theranostics are key to achieving practical, high-quality, and personalized precision medicine - targeting disease manifestations of individual patients and broad populations, alike. Aiming to learn from one another across different world regions, the six country vignettes presented here depict both challenges and victories in de novo establishment or improvement of RT and theranostics infrastructure. METHODS: The International Atomic Energy Agency (IAEA) convened global RT and theranostics experts from diverse world regions and contexts to identify relevant challenges and report progress in their own six countries: Belgium, Brazil, Costa Rica, Jordan, Mongolia, and South Africa. These accounts are collated, compared, and contrasted herein. RESULTS: Common challenges persist which could be more strategically assessed and addressed. A quantifiable discrepancy entails personnel. The estimated radiation oncologists (ROs), nuclear medicine physicians (NMPs), and medical physicists (MPs for RT and nuclear medicine) per million inhabitants in the six collective countries respectively range between 2.69-38.00 ROs, 1.00-26.00 NMPs, and 0.30-3.45 MPs (Table 1), reflecting country-to-country inequities which largely match World Bank country-income stratifications. CONCLUSION: Established goals for RT and nuclear medicine advancement worldwide have proven elusive. The pace of progress could be hastened by enhanced approaches such as more sustainably phased implementation; better multinational networking to share lessons learned; routine quality and safety audits; as well as capacity building employing innovative, resource-sparing, cutting-edge technologic approaches. Bodies such as ministries of health, professional societies, and the IAEA shall serve critical roles in convening and coordinating more innovative RT and theranostics translational research, including expanding nuanced global database metrics to inform, reach, and potentiate milestones most meaningfully. POLICY SUMMARY: Aligned with WHO 25×25 NCDs target; WHA70.12 and WHA76.5 resolutions.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , África do Sul , Jordânia , Brasil , Costa Rica , Medicina de Precisão , Radioterapia , Nanomedicina Teranóstica
3.
Int J Biol Macromol ; 254(Pt 1): 127737, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287589

RESUMO

Non-healing wounds represent a significant burden for healthcare systems and society, giving rise to severe economic and human issues. Currently, the use of dressings and visual assessment represent the primary and standard care for wounds. Conventional dressings, like cotton gauze, provide only passive physical protection. Besides, they end up paradoxically hampering the wound-healing process by producing tissue damage and pain when removed during routine check-ups. In response to these limitations, researchers, engineers, and technologists are developing innovative dressings that incorporate advanced diagnostic and therapeutic functionalities, coined as "smart dressings". Now, the maturation of smart dressing is bringing them closer to real-life applications, leading to an exciting new generation of these devices. The next generation of smart dressings is capable of monitoring in real-time multiple biomarkers while including pro-healing capabilities in a single platform. Such multiplexed and theranostic smart dressings are expected to offer a timely biomarker-directed diagnosis of non-healing wounds while enabling rapid, automated, and personalized treatments of infection and chronicity. Herein, we provide an insightful overview of these advantageous devices, delving into the diverse spectrum of possible engineering strategies. This encompasses the use of electrochemical and optical platforms with diverse multiplexing architectures, such as multi-zone sensing arrays and multi-layered devices. Open or closed-loop theranostic mechanisms using various stimuli-responsive materials that could be internally or externally controlled are also included. Finally, a critical discussion on the main challenges and future directions of smart dressings is also offered.


Assuntos
Bandagens , Medicina de Precisão , Humanos , Cicatrização
5.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629204

RESUMO

Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Estado Funcional , Agressão , Biomarcadores Tumorais
6.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770385

RESUMO

Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.

7.
OMICS ; 27(1): 6-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602768

RESUMO

Coronavirus disease 2019 (COVID-19) is a systemic disease that impacts multiple organ systems with a complex clinical presentation and outcomes that can vary from person to person and between populations. To optimize COVID-19 treatment outcomes, and in light of the availability of antiviral drugs, there is a need for greater attention to the field of theranostics, the fusion of therapeutics and diagnostics. Theranostics tests would be invaluable, we suggest in this expert review, so as to optimize the efficacy and safety of current and future antiviral drugs against COVID-19. Theranostics would also assist in the design and implementation of clinical trials with antiviral drug candidates. We discuss here theranostics considering drugs such as remdesivir, Paxlovid™, and molnupiravir. All in all, we underscore that theranostics as a concept and practice is essential for efficient and safe health interventions against COVID-19 and other ecological crises in the 21st century.


Assuntos
COVID-19 , Humanos , Antivirais/uso terapêutico , Medicina de Precisão , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
8.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296638

RESUMO

Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.


Assuntos
Nanopartículas , Medicina de Precisão , Animais , Camundongos , Distribuição Tecidual , Benzeno , Lipoproteínas HDL/metabolismo , Nanopartículas/uso terapêutico , Colesterol/metabolismo , Lipoproteínas/metabolismo , Radioisótopos , Fosfolipídeos , Receptores Depuradores/metabolismo
9.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297660

RESUMO

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

10.
EJNMMI Radiopharm Chem ; 7(1): 8, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467307

RESUMO

BACKGROUND: Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS: Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION: Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA