Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208122

RESUMO

In this work, novel adsorbents based on 3D hierarchical silica monoliths functionalized with thiol groups were used for the removal of Hg(II) ions from an acidic aqueous solution (pH 3.5). Silica monoliths were synthesized by using two different pluronic triblock polymers (P123 and F127) to study the effect of porous structure on their sorption capacity. Before and after functionalization by grafting with 3-mercaptopropyltrimethoxysilane (MPTMS), the monoliths were characterized by several techniques, and their Hg(II) removal potential was evaluated in batch experiments at 28 °C and pH 3.5, using different initial concentrations of Hg(II) ions in water (200-500 mg L-1). The thiol groups of the monoliths calcined at 550 °C showed thermal stability up to 300 °C (from TG/DTG). The functionalized monolith synthesized with P123 polymer and polyethylene glycol showed favorable hierarchical macro-mesopores for Hg(II) adsorption. M(P123)-SH exhibited 97% removal of Hg(II) at concentration 200 mg L-1. Its maximum adsorption capacity (12.2 mmol g-1) was two times higher than that of M(F127)-SH, demonstrating that the 3D hierarchical macro-mesoporosity allowing accessibility of Hg(II) to thiol groups favors the physical and chemical adsorption of Hg(II) under slightly acidic conditions.

2.
J Environ Sci Health B ; 53(12): 840-845, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30265183

RESUMO

Fu monisin B1 (FB1) is a mycotoxin commonly found in maize and maize-based products. Ingestion of FB1-contaminated causes a myriad of dose- and species-dependent toxic effects to human and animal health. In the present study we evaluated the effects of FB1 (8 mg/kg, i.p. for 4 days) on body weight and oxidative stress parameters in the liver, kidney and lung of C57BL/6 male mice. No changes in the organ-to-body weight ratio, organ-to-adrenal gland weight ratio or organ-to-brain weight ratio were found. On the other hand, FB1 exposure increased NPSH levels in liver and lungs whereas decreased FRAP content in liver and kidneys. Levels of TBARS, ascorbic acid and NOx content were not altered by FB1. In summary, four days of FB1 exposure are sufficient to disrupt antioxidant defenses in liver, kidneys and lungs of C57BL/6 male mice without concomitant changes in organs weight.


Assuntos
Fumonisinas/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Zea mays/química , Zea mays/microbiologia
3.
J Microbiol Biotechnol ; 28(7): 1209-1216, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29943556

RESUMO

This study aimed to evaluate the antimicrobial activity of 2-phenylethynyl-butyltellurium (PEBT) in Escherichia coli and the relation to its pro-oxidant effect. For this, we carried out disk diffusion test, minimum inhibitory concentration (MIC) assay, and survival curve analysis. We also measured the level of extracellular reactive oxygen species (ROS), activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and level of non-protein thiols (NPSH). PEBT at 1.28 and 0.128 mg/disk exhibited antimicrobial capability in the disk diffusion test, with an MIC value of 1.92 mg/ml, whereas PEBT at 0.96, 1.92, and 3.84mg/ml inhibited bacterial growth after a 9-h exposure. PEBT at 3.84, 1.92, and 0.96 mg/ml increased extracellular ROS production, decreased the intracellular NPSH level, and reduced the SOD and CAT activities. Glutathione or ascorbic acid in the medium protected the bacterial cells from the antimicrobial effect of PEBT. In conclusion, PEBT exhibited antimicrobial activity against E. coli, involving the generation of ROS, oxidation of NPSH, and reduction of the antioxidant defenses in the bacterial cells.


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Escherichia coli/crescimento & desenvolvimento , Glutationa/metabolismo , Testes de Sensibilidade Microbiana , Compostos Organometálicos/química , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Telúrio
4.
Fish Physiol Biochem ; 44(5): 1349-1362, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29858712

RESUMO

This study evaluated the effects of short-term exposure to sublethal levels of nitrite on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus. An assessment of fish recovery was also performed. Fish were exposed to 0.08 (control), 5.72, 10.43, and 15.27 NO2-N mg L-1 for 10 days followed by the same recovery time. Gill, liver, and muscle samples were collected after 1, 5, and 10 days of exposure and after recovery for the measurement of antioxidant capacity against peroxyl radicals (ACAP), glutathione-S-transferase (GST) activity, content of non-protein (NPSH) and protein thiols (PSH), and lipid peroxidation levels by thiobarbituric acid-reactive substances (TBARS) content. Nitrite exposure induced alterations which compromised the overall antioxidant system (reduced ACAP and GST activity) and enhanced oxidative damage in lipids and proteins. Increases in GST activity and NPSH and PSH contents were also demonstrated. The recovery period allowed for resumption of basal levels for all (treatment 5.72 NO2-N mg L-1) or some of the evaluated parameters (other treatments). In conclusion, exposure to nitrite concentrations from 5.72 to 15.27 NO2-N mg L-1 induced oxidative stress and antioxidant responses in juvenile Brazilian flounder. The 10-day recovery period was sufficient for a complete resumption of basal physiological condition of fish exposed to concentrations of up to 5.72 NO2-N mg L-1.


Assuntos
Antioxidantes/metabolismo , Linguado/fisiologia , Nitritos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento , Animais , Relação Dose-Resposta a Droga , Nitritos/administração & dosagem , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/toxicidade
5.
Syst Biol Reprod Med ; 62(5): 325-34, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27487446

RESUMO

Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. ABBREVIATIONS: DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis PARP: poli ADP ribose polimerasa VCL: curvilinear velocity VSL: straight-line velocity VAP: average path velocity PRDXs: peroxiredoxins ODF: outer dense fiber ODF1: outer dense fiber 1 PI: propidium iodide DMSO: dimethyl sulfoxide SD: standard deviation ANOVA: analysis of variance.


Assuntos
Ácido Peroxinitroso/metabolismo , Espermatozoides/metabolismo , Compostos de Sulfidrila/metabolismo , Corantes Fluorescentes , Humanos , Masculino , Molsidomina/análogos & derivados , Molsidomina/metabolismo , Oxirredução , Análise do Sêmen , Motilidade dos Espermatozoides , Espermatozoides/citologia
6.
EXCLI J ; 11: 604-612, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-27847448

RESUMO

The aim of the present study was to investigate whether the in vitro pro-oxidant effect of ascorbic acid towards thiol groups could be mediated by free radicals formed during its auto-oxidation and/or by a direct oxidation of -SH groups by its oxidized form (dehydroascorbic acid). This hypothesis was examined by measuring the rate of AA (ascorbic acid) oxidation in MOPS (3-morpholinepropanesulfonic acid buffer) and phosphate buffer (PB). Here we have used dithiothreitol (DTT) as model of vicinal thiol-containing enzymes, namely δ-aminolevulinate dehydratase. The rate of AA and DTT oxidation was more pronounced in the presence of PB than in the MOPS. AA oxidation induced by iron/EDTA complex was significantly reduced by addition of superoxide dismutase, catalase and DTT to the reaction medium. H2O2 alone did not stimulate the oxidation of AA; however, AA oxidation was enhanced significantly with the addition of crescent concentrations of iron. Conversely, in DTT oxidation assay (without AA) the addition of iron, EDTA and H2O2, did not promote the oxidation of -SH groups. Our findings suggest that in the presence of physiological concentrations of AA and thiols, the oxidation of -SH groups is mediated by AA conversion to dehydroascorbic acid with the participation of iron. Furthermore, free radical species formed during the auto-oxidation of AA apparently did not oxidize thiol groups to a significant extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA