Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genet. mol. biol ; 40(1,supl.1): 292-304, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-892394

RESUMO

Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.

2.
Bioessays ; 37(11): 1236-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335701

RESUMO

NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Arabidopsis/virologia , Begomovirus/imunologia , Imunidade Vegetal/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Fosforilação , Biossíntese de Proteínas/genética , Transporte Proteico/imunologia , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Glycine max/imunologia , Glycine max/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA