Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791472

RESUMO

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Assuntos
Acetatos , Cactaceae , Carotenoides , Ciclopentanos , Armazenamento de Alimentos , Frutas , Oxilipinas , Ácido Salicílico , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Carotenoides/metabolismo , Armazenamento de Alimentos/métodos , Cactaceae/química , Cactaceae/crescimento & desenvolvimento , Cactaceae/metabolismo , Ácido Salicílico/farmacologia , Salicilatos/farmacologia , Salicilatos/metabolismo , Fenóis/análise , Ácido Oxálico/metabolismo
2.
Plant Mol Biol ; 100(6): 659-674, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187392

RESUMO

KEY MESSAGE: Oxalotrophic Stenotrophomonas isolated from tomato rhizosphere are able to protect plants against oxalate-producing pathogens by a combination of actions including induction of plant defence signalling callose deposition and the strengthening of plant cell walls and probably the degradation of oxalic acid. Oxalic acid plays a pivotal role in the virulence of the necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. In this work, we isolated two oxalotrophic strains (OxA and OxB) belonging to the bacterial genus Stenotrophomonas from the rhizosphere of tomato plants. Both strains were capable to colonise endophytically Arabidopsis plants and protect them from the damage caused by high doses of oxalic acid. Furthermore, OxA and OxB protected Arabidopsis from S. sclerotiorum and B. cinerea infections. Bacterial inoculation induced the production of phenolic compounds and the expression of PR-1. Besides, both isolates exerted a protective effect against fungal pathogens in Arabidopsis mutants affected in the synthesis pathway of salicylic acid (sid2-2) and jasmonate perception (coi1). Callose deposition induced by OxA and OxB was required for protection against phytopathogens. Moreover, B. cinerea and S. sclerotiorum mycelial growth was reduced in culture media containing cell wall polysaccharides from leaves inoculated with each bacterial strain. These findings suggest that cell walls from Arabidopsis leaves colonised by these bacteria would be less susceptible to pathogen attack. Our results indicate that these oxalotrophic bacteria can protect plants against oxalate-producing pathogens by a combination of actions and show their potential for use as biological control agents against fungal diseases.


Assuntos
Fungos/patogenicidade , Oxalatos/metabolismo , Solanum lycopersicum/microbiologia , Stenotrophomonas/fisiologia , Arabidopsis/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidade , Parede Celular/metabolismo , Ciclopentanos/química , Fungos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Oxálico/metabolismo , Oxilipinas/química , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Stenotrophomonas/isolamento & purificação
3.
Parasitol Res ; 117(6): 1773-1781, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680939

RESUMO

For the first time, alterations in the oxidative metabolism of Achatina fulica experimentally infected with different parasite loads of Angiostrongylus cantonensis were determined. For this, the hemolymph activities of lactate dehydrogenase (LDH) and hexokinase and the glucose concentrations in the hemolymph, as well as the polysaccharide reserves in the digestive gland and cephalopedal mass, were assessed. Additionally, the contents of some carboxylic acids in the hemolymph of infected and uninfected snails were determined by high-performance liquid chromatography (HPLC), permitting a better understanding of the alterations related to the host's oxidative metabolism. As the main results, activation of oxidative pathways, such as the glycolytic pathway, was demonstrated in response to the increase in the activity of hexokinase. This tendency was confirmed by the decrease in the contents of glucose in the hemolymph of parasitized snails, indicating that the infection by A. cantonensis alters the host's metabolism, and that these changes are strongly influenced by the parasite load. This metabolic scenario was accompanied by activation of the anaerobic fermentative metabolism, indicated not only by an increase in the activity of (LDH), but also by a reduction of the content of pyruvic acid and accumulation of lactic acid in the hemolymph of parasitized snails. In this circumstance, maintenance of the host's redox balance occurs through activation of the fermentative pathways, and LDH plays a central role in this process. Together, the results indicate that A. cantonensis infection induces activation of the anaerobic metabolism of A. fulica, characterized not only by the accumulation of lactic acid, but also by a reduction in the pyruvic acid and oxalic acid contents in the hemolymph of the infected snails.


Assuntos
Angiostrongylus cantonensis/metabolismo , Glucose/metabolismo , Hemolinfa/metabolismo , Caramujos/metabolismo , Caramujos/parasitologia , Animais , Ácidos Carboxílicos/metabolismo , Cromatografia Líquida de Alta Pressão , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Ácido Oxálico/metabolismo , Estresse Oxidativo , Carga Parasitária , Polissacarídeos/metabolismo , Ácido Pirúvico/metabolismo
4.
Arch Microbiol ; 197(1): 65-77, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381572

RESUMO

The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.


Assuntos
Ecossistema , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Oxalatos/metabolismo , Microbiologia do Solo , Biomassa , Bolívia , Oxalato de Cálcio/metabolismo , Camarões , Carbono/metabolismo , Genes de RNAr , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/fisiologia , Índia , Cinética , Ácido Oxálico/metabolismo , Filogenia , Plantas/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Streptomyces/genética , Clima Tropical
5.
Appl Environ Microbiol ; 80(10): 3081-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610849

RESUMO

During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.


Assuntos
Aspergillus niger/metabolismo , Carvão Vegetal/química , Ácido Cítrico/metabolismo , Fluoretos/toxicidade , Sedimentos Geológicos/química , Gluconatos/metabolismo , Ácido Oxálico/metabolismo , Fósforo/metabolismo , Adsorção , Fluoretos/química , Fósforo/química , Solo/química , Microbiologia do Solo , Solubilidade
6.
Plant Physiol Biochem ; 49(8): 917-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21641227

RESUMO

In plant-pathogen interaction, the hydrogen peroxide (H2O2) may play a dual role: its accumulation inhibits the growth of biotrophic pathogens, while it could help the infection/colonization process of plant by necrotrophic pathogens. One of the possible pathways of H2O production involves oxalic acid (Oxa) degradation by apoplastic oxalate oxidase. Here, we analyzed the production of H2O2, the presence of calcium oxalate (CaOx) crystals and the content of Oxa and ascorbic acid (Asa)--the main precursor of Oxa in plants--in susceptible and resistant cacao (Theobroma cacao L.) infected by the hemibiotrophic fungus Moniliophthora perniciosa. We also quantified the transcript level of ascorbate peroxidase (Apx), germin-like oxalate oxidase (Glp) and dehydroascorbate reductase (Dhar) by RT-qPCR. We report that the CaOx crystal amount and the H2O2 levels in the two varieties present distinct temporal and genotype-dependent patterns. Susceptible variety accumulated more CaOx crystals than the resistant one, and the dissolution of these crystals occurred in the early infection steps and in the final stage of the disease in the resistant and the susceptible variety, respectively. High expression of the Glp and accumulation of Oxa were observed in the resistant variety. The content of Asa increased in the inoculated susceptible variety, but remained constant in the resistant one. The susceptible variety presented reduced Dhar expression. The role of H2O2 and its formation from Oxa via Apx and Glp in resistant and susceptible variety infected by M. perniciosa were discussed.


Assuntos
Agaricales/patogenicidade , Cacau/microbiologia , Peróxido de Hidrogênio/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Cacau/metabolismo , Oxalato de Cálcio/metabolismo , Predisposição Genética para Doença , Genótipo , Ácido Oxálico/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Plant Microbe Interact ; 24(7): 839-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405988

RESUMO

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).


Assuntos
Agaricales/metabolismo , Agaricales/patogenicidade , Carboxiliases/biossíntese , Nicotiana , Ácido Oxálico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carboxiliases/genética , Morte Celular , Flammulina/enzimologia , Flammulina/genética , Formiatos/metabolismo , Necrose , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-9972286

RESUMO

The effects of oxalate on the metabolism of the isolated perfused rat liver were investigated. The main purpose was to verify if oxalate is also active in intact organs as demonstrated in isolated cells. The results revealed that the action of oxalate in the perfused liver resembles only partially that observed in isolated hepatocytes. In the perfused liver, oxalate inhibited gluconeogenesis from alanine, pyruvate and lactate, inhibited glycolysis and stimulated glycogenolysis. These observations confirm previous measurements with isolated hepatocytes. However, additional effects, not observed in isolated hepatocytes, were found. In the perfused liver, oxalate stimulated glucose production from dihydroxyacetone, glycerol or sorbitol. Moreover, the effects of oxalate in the perfused rat liver occurred at concentrations well above those reported for isolated hepatocytes, revealing that the compound is less toxic in the intact tissue. In vivo, the metabolic effects reported here can only be expected to occur at supra-physiological concentrations of oxalate, as in the case of a chronic renal failure.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Ácido Oxálico/farmacologia , Alanina/metabolismo , Animais , Ácido Ascórbico/farmacologia , Gluconeogênese/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Técnicas In Vitro , Cinética , Ácido Láctico/biossíntese , Glicogênio Hepático/biossíntese , Masculino , Ácido Oxálico/administração & dosagem , Ácido Oxálico/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA