Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(5): 2081-2090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34617628

RESUMO

Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box-Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (µl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml-1 ) as dependent variable. Maximum activity (2.97 × 10-3  U ml-1 ) was obtained at pH 5.5, 80 µl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids.


Assuntos
Aminoidrolases , Ensaios de Triagem em Larga Escala , Fungos , Nitrilas/metabolismo , Ácidos Carboxílicos/metabolismo , Aspergillus/metabolismo , Glucose
2.
J Therm Biol ; 97: 102897, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863450

RESUMO

The objective of this study was to evaluate the effect of heat stress on meta-taxonomic and metabolic profiles of prokaryotes in beef cattle rumen. Six pure-breed Nellore heifers with ruminal cannulas were used in the study. Six treatments were tested in a 6 × 6 Latin Square with six periods of 21days. The treatments were evaluated in a 2 × 2 + 2 factorial arrangement, consisting of 4 combinations: two temperatures conditions (thermoneutral, TN: 24 °C; and heat stress, HS: 34 °C) and two dietary energy concentration [low-energy (37% non-fibrous carbohydrates - NFC, 12 Mcal of metabolizable energy per kg of dry matter) or high-energy concentration (50.5% NFC, 18.49 Mcal of metabolizable energy per kg of dry matter)] plus two additional treatments with animals maintained in TN conditions but with your intake restricted (TN-RI) to the same of the heifers in HS with the two dietary energy concentration. The meta-genome was sequenced by MiSeq Sequencing System platform, and the DNA sequences were analysed using Geneious 10.2.3 software. The metabolic profile was evaluated by liquid and gas chromatography. Animals under HS presented lower (P = 0.04) prokaryote richness than animals under TN conditions. The genera Flavonifractor (1.4%), Treponema (0.6%) and Ruminococcus (0.9%) showed the lowest (P < 0.04) and Carnobacterium (7.7%) the highest (P = 0.02) relative abundance when the animals were submitted to HS, in relation to animals in TN. A total of 49 different metabolites were identified in the ruminal samples. The concentration of isobutyric acid (4.32 mM) was highest in bovine rumen under HS conditions. Heat stress influenced the microbiota and concentration of some organic acids in beef cattle rumen. There was a reduction in the richness of rumen in cattle under heat stress, but the diversity of prokaryotes was not affected.


Assuntos
Ácidos Carboxílicos/metabolismo , Microbiota , Rúmen/metabolismo , Rúmen/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Transtornos de Estresse por Calor/microbiologia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Umidade , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , RNA Ribossômico 16S/genética , Temperatura
3.
Mol Microbiol ; 115(4): 672-683, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33098326

RESUMO

Halomonas titanicae KHS3, isolated from a hydrocarbon-contaminated sea harbor in Argentina, is able to grow on aromatic hydrocarbons and displays chemotaxis toward those compounds. This behavior might contribute to the efficiency of its degradation capacity. Using high throughput screening, we identified two chemoreceptors (Htc1 and Htc2) that bind benzoate derivatives and other organic acids. Whereas Htc1 has a high affinity for benzoate (Kd 112 µM) and 2-hydroxybenzoate (Kd 83 µM), Htc2 binds 2-hydroxybenzoate with low affinity (Kd 3.25 mM), and also C3/C4 dicarboxylates. Both chemoreceptors are able to trigger a chemotactic response of E. coli cells to the specific ligands. A H. titanicae htc1 mutant has reduced chemotaxis toward benzoate, and is complemented upon expression of the corresponding receptor. Both chemoreceptors have a Cache-type sensor domain, double (Htc1) or single (Htc2), and their ability to bind aromatic compounds is reported here for the first time.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Ácidos Carboxílicos/metabolismo , Células Quimiorreceptoras/metabolismo , Quimiotaxia , Halomonas/metabolismo , Hidroxibenzoatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fatores Quimiotáticos/metabolismo , DNA Bacteriano , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Escherichia coli/metabolismo , Halomonas/química , Halomonas/genética , Ensaios de Triagem em Larga Escala , Ligantes , Ligação Proteica , Domínios Proteicos , Água do Mar/microbiologia
4.
Bioprocess Biosyst Eng ; 44(2): 271-282, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32918146

RESUMO

Carboxylic acids (CA) are considered high added-value compounds, and their production from wastes has gained economic and environmental notoriety. However, the CA production and kinetic modeling using some agro-industrial wastewaters, such as bovine slaughterhouse wastewater (SHW), are not well reported in the literature. Therefore, the objective of this work was to evaluate the CA production potential using SHW as a substrate under acidogenic conditions and to apply mathematical models to estimate the kinetic parameters of particulate organic matter hydrolysis, soluble organic matter consumption, and CA production. Tests were carried out in quadruplicate batch reactors with a 250-mL reaction volume, with brewery sludge as inoculum and using chloroform (0.05%, v/v) for methanogenesis inhibition. The obtained yield was 0.55 g acids gCODA-1, corresponding to 0.76 gCOD gCODA-1. The production of caproic acid without the addition of electron donors was achieved. Mathematical models that describe exponential growth, such as the first-order exponential model, cone model, and Fitzhugh model, were the most suitable to describe the production kinetics of CA. Finally, SHW seems to be a promising substrate to be investigated in the carboxylic platform.


Assuntos
Reatores Biológicos , Ácidos Carboxílicos/metabolismo , Modelos Biológicos , Águas Residuárias/microbiologia , Microbiologia da Água , Matadouros , Animais , Bovinos , Cinética
5.
World J Microbiol Biotechnol ; 36(11): 166, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000321

RESUMO

The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.


Assuntos
Biomassa , Lignina/metabolismo , Ácidos Carboxílicos/metabolismo , Fermentação , Lacase/metabolismo , Peroxidases/metabolismo , Superóxido Dismutase/metabolismo
6.
Clin Nucl Med ; 45(1): e63-e64, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31652158

RESUMO

A 72-year-old man with a history of T1cN0M0 prostate adenocarcinoma and rising prostate-specific antigen underwent a fluciclovine PET/CT scan that showed high uptake in several para-aortic nodes, suspicious for prostate cancer. A right upper lobe single pulmonary nodule (SPN), demonstrated only mild uptake, which raised the suspicion for a lung primary. Subsequent FDG PET/CT showed high uptake in the SPN, revealing poorly differentiated adenocarcinoma at biopsy, but with no abnormal uptake in the para-aortic nodes. This case highlights the complementary potential of fluciclovine and FDG PET in patients with a history of prostate cancer biochemical recurrence and SPN.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/metabolismo , Ácidos Carboxílicos/metabolismo , Ciclobutanos/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Adenocarcinoma de Pulmão/patologia , Idoso , Transporte Biológico , Humanos , Masculino , Neoplasias Primárias Múltiplas/diagnóstico por imagem , Neoplasias Primárias Múltiplas/metabolismo , Neoplasias Primárias Múltiplas/patologia , Neoplasias da Próstata/patologia , Recidiva
7.
Anaerobe ; 59: 145-153, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254652

RESUMO

Glycerol, the main residue of biodiesel production, can be used to produce organic acids and energy through anaerobic digestion. This study aimed to assess microbial structure, diversity, productivity, and stability and the influence of these parameters on the performance of an anaerobic reactor. The experimental setup consisted of an upflow anaerobic sludge blanket (UASB) reactor fed residual glycerol and nutrients. The organic loading rate (OLR) was gradually increased through five stages, and sludge samples were collected at each, followed by DNA extraction and PCR denaturing gradient gel electrophoresis (PCR-DGGE). The resulting bands were excised, amplified, and purified. The results showed increased bacterial diversity and richness from the inoculum (Rr 38.72 and H 2.32) and along stages I and II, reaching the highest populational parameters (Rr 194.06 and H 3.32). The following stages promote decreases in richness and diversity, achieving the lowest populational parameters on this study (Rr 11.53 and H 2.04). Biogas production increased along with functional organization due to the specialization of the bacterial community and a decrease in the methanogenic population, both promoted by the increase in OLR.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Reatores Biológicos/microbiologia , Biota , Glicerol/metabolismo , Anaerobiose , Ácidos Carboxílicos/metabolismo
8.
J Exp Bot ; 70(22): 6571-6579, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30820551

RESUMO

The Portulacaceae enable the study of the evolutionary relationship between C4 and crassulacean acid metabolism (CAM) photosynthesis. Shoots of well-watered plants of the C3-C4 intermediate species Portulaca cryptopetala Speg. exhibit net uptake of CO2 solely during the light. CO2 fixation is primarily via the C3 pathway as indicated by a strong stimulation of CO2 uptake when shoots were provided with air containing 2% O2. When plants were subjected to water stress, daytime CO2 uptake was reduced and CAM-type net CO2 uptake in the dark occurred. This was accompanied by nocturnal accumulation of acid in both leaves and stems, also a defining characteristic of CAM. Following rewatering, net CO2 uptake in the dark ceased in shoots, as did nocturnal acidification of the leaves and stems. With this unequivocal demonstration of stress-related reversible, i.e. facultative, induction of CAM, P. cryptopetala becomes the first C3-C4 intermediate species reported to exhibit CAM. Portulaca molokiniensis Hobdy, a C4 species, also exhibited CAM only when subjected to water stress. Facultative CAM has now been demonstrated in all investigated species of Portulaca, which are well sampled from across the phylogeny. This strongly suggests that in Portulaca, a lineage in which species engage predominately in C4 photosynthesis, facultative CAM is ancestral to C4. In a broader context, it has now been demonstrated that CAM can co-exist in leaves that exhibit any of the other types of photosynthesis known in terrestrial plants: C3, C4 and C3-C4 intermediate.


Assuntos
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Dióxido de Carbono/metabolismo , Luz , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação
9.
J Exp Bot ; 70(22): 6495-6508, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30810162

RESUMO

In plants exhibiting crassulacean acid metabolism (CAM), CAM photosynthesis almost always occurs together with C3 photosynthesis, and occasionally with C4 photosynthesis. Depending on species, ontogeny, and environment, CAM input to total carbon gain can vary from values of <1% to 100%. The wide range of CAM phenotypes between and within species is a fascinating example of functional diversity and plasticity, but poses a significant challenge when attempting to define CAM. CO2 gas exchange experiments designed for this review illustrate key patterns of CAM expression and highlight distinguishing features of constitutive and facultative CAM. Furthermore, they help to address frequently recurring questions on CAM terminology. The functional and evolutionary significance of contrasting CAM phenotypes and of intermediate states between extremes is discussed. Results from a study on nocturnal malate accumulation in 50 species of Aizoaceae exposed to drought and salinity stress suggest that facultative CAM is more widespread amongst vascular plants than previously thought.


Assuntos
Ácidos Carboxílicos/metabolismo , Fenômenos Ecológicos e Ambientais , Fotossíntese , Bioengenharia , Dióxido de Carbono/metabolismo , Plantas/metabolismo
10.
J Basic Microbiol ; 59(5): 487-495, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30768729

RESUMO

This study tested the solubilization of phosphorus by five actinobacterial strains in liquid media containing Ca3 PO4 ; AlPO4 or FePO4 as the sole phosphate source, and discusses the possible mechanisms involved in this process. P solubilization by different strains was accompanied by a significant drop in pH from 7.0 to 2.15-5.0 after 14 days. The efficiency of different strains depended on the P-source. Streptomyces spp. MM140 and MM141 were the most efficient in solubilizing Ca3 PO4 , MM136, and MM141 were the most efficient in solubilizing AlPO4 , while all strains were equally efficient in solubilizing FePO4 . Gluconic, oxalic, citric, malic, succinic, formic, and acetic acid were detected in the medium with Ca3 PO4 , while all except acetic acid were detected in the media with FePO4 or AlPO4 . Although we did not use an organic source of phosphorus in the media, all strains produced acid and alkaline phosphatase. It is concluded from this study that actinobacteria produced multiple organic acids followed by a decrease in the pH to solubilize phosphate salts. As well as producing phosphatase, these microorganisms were found to have different ways of making P available, suggesting an ecological advantage as they form part of soil microbiomes important for plants.


Assuntos
Actinobacteria/metabolismo , Fosfatos/metabolismo , Actinobacteria/classificação , Disponibilidade Biológica , Ácidos Carboxílicos/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Fosfatos/farmacocinética , Monoéster Fosfórico Hidrolases/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA