Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.053
Filtrar
1.
Environ Sci Pollut Res Int ; 31(38): 50398-50410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093390

RESUMO

This study comparatively evaluated effluent reuse from two TWs-a horizontal subsurface flow (HF) and a vertical subsurface flow (VF)-used for rural wastewater treatment in Central Chile during the initial operation stage. The two TWs were planted with Zantedeschia aethiopica and were operated for 10 months at a pilot scale. The water quality of the influent and effluents was measured and compared with reuse regulations. The results showed similarities in the behavior of the effluents from the two TWs, presenting differences only in the chemical oxygen demand (COD) and different forms of nitrogen, suggesting the necessity of complementary treatment stages or modifications to the operation. The effluents from the HF better fulfilled the reuse standards for irrigation, as the VF faced problems associated with its size. However, a complementary disinfection system is necessary to improve pathogen removal in the effluents coming from the two TWs, especially to be reused as irrigation water for crops. Finally, this work showed the potential for applying subsurface TWs for wastewater treatment in rural areas and reusing their effluents as irrigation water, practice that can contribute to reducing the pressure on water resources in Chile, and that can be used as an example for other countries facing similar problems.


Assuntos
Agricultura , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água , Áreas Alagadas , Chile , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Qualidade da Água
2.
Water Sci Technol ; 90(3): 807-823, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141036

RESUMO

The concrete industry is a significant consumer of drinking water and natural aggregates, such as sand and gravel. However, the scarcity of water and aggregate resources and the challenges associated with the disposal of construction and demolition waste prompted the exploration of alternative materials. This study investigates the feasibility of incorporating secondary treated wastewater from UASB reactors followed by trickling filters and mixed recycled aggregates as potential alternatives. To assess the viability of these alternatives, the study considered the replacement of 100% potable water with treated wastewater, as well as varying proportions of recycled gravel (20, 40, 60, 80, and 100%) and recycled sand (10, 20, 30, 40, and 100%). Physical and mechanical properties were negatively affected, but it was possible to reach compressive results over 40 MPa and splitting tensile strength over 4 MPa for almost all mixes. Regarding physical properties, the use of alternative materials caused poorer outcomes for density, water absorption, and air-void ratio. The limited magnitude of these detrimental effects indicates the potential of manufacturing concrete with the addition of combined treated wastewater and recycled aggregate as a viable strategy while enhancing reuse practices.


Assuntos
Materiais de Construção , Reciclagem , Águas Residuárias , Reciclagem/métodos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
3.
Sci Total Environ ; 952: 175440, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39153611

RESUMO

Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically genotype A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of this virus in metropolitan and regional wastewater samples in Queensland, Australia. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 µL of nucleic acid) down to a dilution of 1 × 10-5 pg/µL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/µL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.


Assuntos
Monitoramento Ambiental , Kobuvirus , Técnicas de Amplificação de Ácido Nucleico , Águas Residuárias , Águas Residuárias/virologia , Kobuvirus/genética , Queensland , Técnicas de Amplificação de Ácido Nucleico/métodos , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
4.
Rev Argent Microbiol ; 56(3): 241-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39089979

RESUMO

Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.


Assuntos
Chlorella vulgaris , Chlorella vulgaris/genética , Águas Residuárias/microbiologia , Argentina , Biodegradação Ambiental , Evolução Molecular Direcionada , Mutagênese , Clorofila A , Clorofila/análise , Peróxido de Hidrogênio/farmacologia
5.
PLoS One ; 19(7): e0305108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959255

RESUMO

The Global Specialized Polio Laboratory at CDC supports the Global Poliovirus Laboratory Network with environmental surveillance (ES) to detect the presence of vaccine strain polioviruses, vaccine-derived polioviruses, and wild polioviruses in high-risk countries. Environmental sampling provides valuable supplementary information, particularly in areas with gaps in surveillance of acute flaccid paralysis (AFP) mainly in children less than 15 years. In collaboration with Guatemala's National Health Laboratory (Laboratorio Nacional de Salud Guatemala), monthly sewage collections allowed screening enterovirus (EV) presence without incurring additional costs for sample collection, transport, or concentration. Murine recombinant fibroblast L-cells (L20B) and human rhabdomyosarcoma (RD) cells are used for the isolation of polioviruses following a standard detection algorithm. Though non-polio-Enteroviruses (NPEV) can be isolated, the algorithm is optimized for the detection of polioviruses. To explore if other EV's are present in sewage not found through standard methods, five additional cell lines were piloted in a small-scale experiment, and next-generation sequencing (NGS) was used for the identification of any EV types. Human lung fibroblast cells (HLF) were selected based on their ability to isolate EV-A genus. Sewage concentrates collected between 2020-2021 were isolated in HLF cells and any cytopathic effect positive isolates used for NGS. A large variety of EVs, including echoviruses 1, 3, 6, 7, 11, 13, 18, 19, 25, 29; coxsackievirus A13, B2, and B5, EV-C99, EVB, and polioviruses (Sabin 1 and 3) were identified through genomic typing in NGS. When the EV genotypes were compared by phylogenetic analysis, it showed many EV's were genomically like viruses previously isolated from ES collected in Haiti. Enterovirus occurrence did not follow a seasonality, but more diverse EV types were found in ES collection sites with lower populations. Using the additional cell line in the existing poliovirus ES algorithm may add value by providing data about EV circulation, without additional sample collection or processing. Next-generation sequencing closed gaps in knowledge providing molecular epidemiological information on multiple EV types and full genome sequences of EVs present in wastewater in Guatemala.


Assuntos
Enterovirus , Fibroblastos , Águas Residuárias , Humanos , Enterovirus/genética , Enterovirus/isolamento & purificação , Águas Residuárias/virologia , Fibroblastos/virologia , Guatemala/epidemiologia , Pulmão/virologia , Pulmão/citologia , Epidemiologia Molecular , Linhagem Celular , Filogenia , Animais , Poliovirus/genética , Poliovirus/isolamento & purificação , Esgotos/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/epidemiologia
6.
Appl Environ Microbiol ; 90(8): e0116524, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39012101

RESUMO

Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of ß-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 ß-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.


Assuntos
Proteínas de Bactérias , Citrobacter , Enterobacter , Hospitais , Águas Residuárias , beta-Lactamases , Águas Residuárias/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Citrobacter/genética , Citrobacter/enzimologia , Citrobacter/efeitos dos fármacos , Citrobacter/isolamento & purificação , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Enterobacter/enzimologia , Antibacterianos/farmacologia , México
7.
Water Res ; 261: 122004, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991242

RESUMO

Wastewater-based epidemiology (WBE) has gained prominence worldwide as a powerful tool in public health. This study aimed to monitor the circulation of Hepatitis E Virus (HEV) from wastewater samples collected during a six-year period and compare these results with clinical surveillance in the central region of Argentina. From 2017 to 2022, 1008 raw wastewater samples were analyzed, including four wastewater treatment plants from four cities (n=319), and 7 local neighborhood collector sewers in Córdoba city (n=689). Serum and/or stool samples from patients suspected of HEV infection were also analyzed (n=48). HEV molecular detection and viral load quantification were performed by real time RT-qPCR, and genetic characterization by two RT-Nested PCRs (targeting partial ORF-1 and ORF-2 genomic regions), sequencing and phylogenetic analysis. Fifty-three (5.3%) wastewater samples were RNA-HEV positive by real time RT-qPCR, with variations according to the location and year (0.0% - 21.6%). Out of these, ORF-2 genomic region was amplified in 20 samples (37.7%) and ORF-1 partial region in 12 (22.6%), and eighteen sequences were obtained. Throughout the study period, two (4.2%) HEV confirmed infections were reported, and one sequence was obtained. Phylogenetic analyses for both genomic regions showed that all the isolates were genotype HEV-3 clade abchijklm. Our study detected HEV in wastewater over a six-year period, despite a low number of clinical cases, emphasizing WBE as a valuable tool that complements clinical surveillance, by detecting pathogens' presence; identifying their transmission, circulation dynamics and excretion hotspots; and revealing changes in their genomic diversity.


Assuntos
Vírus da Hepatite E , Filogenia , Águas Residuárias , Argentina/epidemiologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Águas Residuárias/virologia , Humanos , Hepatite E/epidemiologia , Hepatite E/virologia , Vigilância Epidemiológica Baseada em Águas Residuárias
8.
Environ Sci Pollut Res Int ; 31(35): 48650-48662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037628

RESUMO

The presence of pharmaceuticals in wastewater resulting from human activities has driven researchers to explore effective treatment methods such as adsorption using activated carbon (AC). While AC shows promise as an adsorbent, further studies are essential to comprehend its entire interaction with pharmaceuticals. This article investigates the adsorption of potassium diclofenac (PD) onto AC using experimental and modeling approaches. Batch adsorption studies coupled with Fourier transform infrared spectroscopy (FTIR) were employed to clarify the adsorption mechanism of PD on AC. Various kinetic and isotherm adsorption models were applied to analyze the adsorbent-adsorbate interaction. The kinetics were best described by Avrami's fractional order (AFO) nonlinear model. Also, the intraparticle diffusion (IP) model reveals a three-stage adsorption process. The experimental equilibrium data fitted well with the three-parameter nonlinear Liu model, indicating a maximum adsorption capacity (Qmax) of 88.45 mg g-1 and suggesting monolayer or multilayer adsorption. Thermodynamic analysis showed favorable adsorption (ΔG° < 0), with an enthalpy change (ΔH° = -30.85 kJ mol-1) characteristic of physisorption involving hydrogen bonds and π-π interactions. The adsorption mechanism was attributed to forming a double layer (adsorbate-adsorbent and adsorbate-adsorbate).


Assuntos
Carvão Vegetal , Diclofenaco , Poluentes Químicos da Água , Diclofenaco/química , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Carbono/química
9.
J Environ Manage ; 366: 121612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971060

RESUMO

Productive activities such as pig farming are a fundamental part of the economy in Mexico. Unfortunately, because of this activity, large quantities of wastewater are generated that have a negative impact in the environment. This work shows an alternative for treating piggery wastewater based on advanced oxidation processes (Fenton and solar photo Fenton, SPF) that have been probed successfully in previous works. In the first stage, Fenton and SPF were carried out on a laboratory scale using a Taguchi L9-type experimental design. From the statistical analysis of this design, the operating parameters: pH, time, hydrogen peroxide concentration [H2O2], and iron ferrous concentration [Fe2+] that maximize the response variables: Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), and color were chosen. From these, a cascade forward neural network was implemented to establish a correlation between data from the variables to the physicochemical parameters to be measure being that a great fit of the data was obtained having a correlation coefficient of 0.99 which permits to optimize the pollutant degradation and predict the removal efficiencies at pilot scale but with a projection to a future industrial scale. A relevant result, it was found that the optimal values for maximizing the removal of physicochemical parameters were pH = 3, time = 60 min, H2O2/COD = 1.5 mg L-1, and H2O2/Fe2+ = 2.5 mg L-1. With these conditions degradation percentages of 91.44%, 47.14%, and 97.89% for COD, TOC, and color were obtained from the Fenton process, while for SPF the degradation percentage increased moderately. From the ANN analysis, the possibility to establish an intelligent system that permits to predict multiple results from operational conditions has been achieved.


Assuntos
Análise da Demanda Biológica de Oxigênio , Peróxido de Hidrogênio , Redes Neurais de Computação , Águas Residuárias , Águas Residuárias/química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Animais , México , Purificação da Água/métodos , Ferro/química , Oxirredução
10.
Chemosphere ; 363: 142923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059642

RESUMO

Biobeds are presented as an alternative for good pesticide wastewater management on farms. This work proposes a new test for in-situ biomonitoring of pesticide detoxification in biobeds. It is based on the assessment of visually appreciable injuries to Eisenia fetida. The severity of the injury to each exposed individual is assessed from the morphological changes observed in comparison with the patterns established in seven categories and, an injury index is calculated. A linear relationship between the proposed injury index and the pesticide concentration was determined for each pesticide sprayed individually in the biomixture. The five pesticides used were atrazine, prometryn, clethodim, haloxyfop-P-methyl and dicamba. In addition, a multiple linear regression model (i.e., a multivariate response surface) was fitted, which showed a good generalization capacity. The sensitivity range of the injury test was tested from 0.01 to 630 mg kg-1 as the total pesticide concentration. This index is then used to monitor the detoxification of these pesticides in a biomixture (composed of wheat stubble, river waste, and soil, 50:25:25% by volume) over 210 days. The results are compared with standardized tests (Eisenia fetida avoidance test and Lactuca sativa seed germination test) carried out on the same biomixture. The results are also compared with data on the removal of pesticides. The injury test showed a better correlation with the removal of pesticides than the avoidance test and seed germination test. This simple and inexpensive test has proved to be useful for decontamination in-situ monitoring in biobeds.


Assuntos
Monitoramento Biológico , Oligoquetos , Praguicidas , Praguicidas/análise , Praguicidas/metabolismo , Oligoquetos/metabolismo , Monitoramento Biológico/métodos , Animais , Atrazina/toxicidade , Atrazina/análise , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Monitoramento Ambiental/métodos , Águas Residuárias/química , Prometrina/toxicidade , Dicamba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA