Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9075, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493970

RESUMO

Agriculture, forestry and other land uses are currently the second highest source of anthropogenic greenhouse gases (GHGs) emissions. In soil, these gases derive from microbial activity, during carbon (C) and nitrogen (N) cycling. To investigate how Eucalyptus land use and growth period impact the microbial community, GHG fluxes and inorganic N levels, and if there is a link among these variables, we monitored three adjacent areas for 9 months: a recently planted Eucalyptus area, fully developed Eucalyptus forest (final of rotation) and native forest. We assessed the microbial community using 16S rRNA gene sequencing and qPCR of key genes involved in C and N cycles. No considerable differences in GHG flux were evident among the areas, but logging considerably increased inorganic N levels. Eucalyptus areas displayed richer and more diverse communities, with selection for specific groups. Land use influenced communities more extensively than the time of sampling or growth phase, although all were significant modulators. Several microbial groups and genes shifted temporally, and inorganic N levels shaped several of these changes. No correlations among microbial groups or genes and GHG were found, suggesting no link among these variables in this short-rotation Eucalyptus study.


Assuntos
Eucalyptus/fisiologia , Células Procarióticas/fisiologia , Solo/química , Agricultura/métodos , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monitoramento Ambiental/métodos , Eucalyptus/genética , Eucalyptus/metabolismo , Agricultura Florestal/métodos , Florestas , Gases de Efeito Estufa/química , Gases de Efeito Estufa/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Células Procarióticas/metabolismo , RNA Ribossômico 16S/genética , Rotação
2.
Biomed Res Int ; 2019: 2051986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360705

RESUMO

Nitrification and sulfur-based autotrophic denitrification processes can be used to remove ammonia from wastewater in an economical way. However, under certain operational conditions, these processes accumulate intermediate compounds, such as elemental sulphur, nitrite, and nitrous oxide, that are noxious for the environment. In order to predict the generation of these compounds, an analysis based on the Gibbs free energy of the possible reactions and on the oxidative capacity of the bulk liquid was done on case study systems. Results indicate that the Gibbs free energy is not a useful parameter to predict the generation of intermediate products in nitrification and autotrophic denitrification processes. Nevertheless, we show that the specific productions of nitrous oxide during nitrification, and of elemental sulphur and nitrite during autotrophic denitrification, are well related to the oxidative capacity of the bulk liquid.


Assuntos
Amônia/química , Processos Autotróficos , Nitrificação , Nitritos/química , Óxido Nitroso/química , Águas Residuárias/química , Oxirredução , Enxofre/química
3.
Water Sci Technol ; 76(9-10): 2337-2349, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29144292

RESUMO

The continuous measurements of N2O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N2O emission peaks. There are indications that the variation of the air flow rate influenced N2O emissions; high N2O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO2- concentrations. Thus, continuous measurements of N2O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N2O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N2O than without organic shock loading. In short, non-BNR WWTPs are subject to high N2O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.


Assuntos
Óxido Nitroso/química , Esgotos/química , Águas Residuárias/química , Purificação da Água/métodos , Reatores Biológicos , Brasil , Mudança Climática , Desnitrificação , Nitrificação , Nitrogênio/química , Oxigênio/análise , Poluentes Químicos da Água/química , Purificação da Água/instrumentação
4.
J Inorg Biochem ; 162: 102-108, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338201

RESUMO

Nitroxyl (HNO) is a species that has been proposed recently to play different roles in nitrosative stress processes. HNO decomposition in aqueous solution leading to N2O is a fast reaction that competes with many biochemical reactions in which HNO may be involved. Since molecular determinants of this reaction are still not fully understood, we present in this work an exhaustive analysis of the mechanism in terms of electronic-structure calculations as well as state of the art hybrid quantum mechanics/molecular mechanics molecular dynamics simulations. We characterized the reaction mechanism and computed free energy profiles for the reaction steps using an umbrella sampling procedure. We propose a first dimerization step followed by an acid-base equilibria. Afterwards, the product is formed from two main pathways involving cis-hyponitrous acid (cis-HONNOH) and its conjugate basis as intermediate. Our calculations show preference for the anionic pathway under physiological conditions and allow us to rationalize the results in terms of a molecular description of specific interactions with the solvent. These interactions turn out to be determinant in the stabilization of transition states and, thereby, modifying the free energy barriers. We predict a strong pH-dependence of the overall kinetics of N2O formation, related with the fraction of reactive species available in solution. Finally, we suggest experimental procedures which could validate this mechanism.


Assuntos
Elétrons , Óxidos de Nitrogênio/química , Óxido Nitroso/química , Dimerização , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Teoria Quântica , Soluções , Termodinâmica , Água/química
5.
PLoS One ; 10(8): e0135234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252377

RESUMO

The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.


Assuntos
Agricultura , Grão Comestível/crescimento & desenvolvimento , Nitrogênio/química , Óxido Nitroso/química , Poluentes Atmosféricos , Atmosfera , Brasil , Dióxido de Carbono/química , Meio Ambiente , Fertilizantes , Gases , Efeito Estufa , Metano/química , Modelos Estatísticos
6.
J Environ Manage ; 98: 56-64, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245865

RESUMO

Nowadays, the drastic pollution problems, some of them related with greenhouse gas emissions, have promoted important attempts to face and diminish the global warming effects on the Mexico Valley Metropolitan Zone (MVMZ) as well as on the huge urban zones around the world. To reduce the exhaust gas emissions, many efforts have been carried out to reformulate fuels and design new catalytic converters; however, it is well known that other variables such as socio-economic and transport structure factors also play an important role around this problem. The present study analyzes the roles played by several commonly-used three-way catalytic converters (TWC) and the average traffic speed in the emission of N(2)O as greenhouse gas. According to this study, by increasing the average traffic flow and avoiding constant decelerations (frequent stops) during common trips, remarkable environmental and economic benefits could be obtained due to the diminution of N(2)O and other contaminant emissions such as ammonia (NH(3)) and even CO(2) with the concomitant reduced fossil fuel consumption. The actions mentioned above could be highly viable to diminish, in general, the global warming effects and contamination problems.


Assuntos
Poluição do Ar/prevenção & controle , Óxido Nitroso/química , Emissões de Veículos , Cidades , Efeito Estufa , México , Veículos Automotores , Paládio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA