Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Pharm ; 659: 124252, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38782149

RESUMO

Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.


Assuntos
Ceratite por Acanthamoeba , Emulsões , Sesquiterpenos Policíclicos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Sesquiterpenos Policíclicos/química , Nanopartículas , Administração Oftálmica , Cetrimônio/química , Animais , Acanthamoeba/efeitos dos fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Soluções Oftálmicas , Humanos
2.
Exp Parasitol ; 197: 29-35, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30648558

RESUMO

Free-living amoebae of the genus Acanthamoeba are the etiological agents of cutaneous lesions, granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK), which are chronic infections with poor prognosis if not diagnosed promptly. Currently, there is no optimal therapeutic scheme to eradicate the pathologies these protozoa cause. In this study we report the morphological and molecular identification of three species of the genus Acanthamoeba, belonging to T4 group; A. polyphaga isolated from the corneal ulcer of a patient sample of AK case; A. castellanii isolated from the contact lens of an AK patient and A. palestinensis obtained from a soil sample. The in vitro activity of chlorhexidine, itraconazole and voriconazole drugs against trophic stage was also evaluated through a colorimetric assay based on the oxidation-reduction of alamar blue. The strains in the study were sensitive to the evaluated drugs; although when determining the 50% inhibitory concentration (IC50) statistically significant differences were observed. A. castellanii showed to be highly sensitive to voriconazole (0.66 ±â€¯0.13 µM) but the least sensitive to chlorhexidine and itraconazole (8.61 ±â€¯1.63 and 20.14 ±â€¯4.93 µM, respectively), A. palestinensis showed the highest sensitivity to itraconazole (0.502 ±â€¯0.11 µM) and A. polyphaga expressed moderate sensitivity to chlorhexidine and itraconazole and lower sensitivity to voriconazole (10.10 ±â€¯2.21 µM). These results showed that species of the genus Acanthamoeba express different sensitivity to the tested drugs, which could explain the problems surrounding the establishment of a treatment of choice in the infections caused by these amoebae. We consider that although chlorhexidine and itraconazole show good activity on these amoebae and have been used in cases of AK in Mexico with acceptable results, voriconazole should be considered as the first therapeutic option of future Acanthamoeba infections that will be diagnosed in our country.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebíase/parasitologia , Anti-Infecciosos/farmacologia , Clorexidina/farmacologia , Itraconazol/farmacologia , Voriconazol/farmacologia , Acanthamoeba/classificação , Acanthamoeba/genética , Ceratite por Acanthamoeba/parasitologia , Amebíase/tratamento farmacológico , Lentes de Contato/parasitologia , Úlcera da Córnea/parasitologia , DNA de Protozoário/isolamento & purificação , Genótipo , Humanos , Concentração Inibidora 50 , México , Solo/parasitologia
3.
Exp Parasitol ; 196: 22-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30472333

RESUMO

Acanthamoeba keratitis (AK) is a sight-threatening corneal infection. The early symptoms include redness, pain, photophobia and intense tearing. Chronic infection usually progresses to stromal inflammation, ring ulcers, corneal opacification and hypopyon. Here we document an AK case in a high myopic 38-year-old woman from Mexico City, with a history of wearing contact lenses while swimming. Corneal scrapes cultures were positive only for amoebae, consequently a treatment including netilmicin 0.3% and oral itraconazole 100 mg/12 h was prescribed. The infection was resolved after 8 months, leaving a slight leucoma outside the visual axis, with a visual acuity of 20/150. In the laboratory, the amoebic isolate was axenized in PYG medium, with an optimal growth at 30 °C, and was identified morphologically as Acanthamoeba polyphaga according to the taxonomic criteria of Page (1988) and placed in the T4 group by genotyping. The virulence of this strain (40%) was determined by intranasal inoculation of 1 × 106/20 µl trophozoites in BALB/c mice recovering from brain, proving their invasion ability and by the interaction with monolayers of epithelial cells of the established MDCK line of canine kidney origin (1:2 ratio of interaction), at 1, 3, 6, 8 and 24 h; trophozoites migrated to cell junctions inducing few lytic zones. In addition to the biological characterization, in vitro drug sensitivity tests were performed using chlorhexidine, itraconazole, netilmicin and voriconazole. Results revealed that voriconazole was the most effective compound. A. polyphaga remains as one of the most frequently isolated species producing AK. The treatment of AK case using netilmicin and oral itraconazole solved the disease, but the healing process was wide-ranging (8 months). The use of voriconazole and chlorhexidine may be an alternative treatment of future AK cases in Mexico.


Assuntos
Ceratite por Acanthamoeba/parasitologia , Acanthamoeba/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Acanthamoeba/isolamento & purificação , Ceratite por Acanthamoeba/tratamento farmacológico , Adulto , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Clorexidina/farmacologia , Lentes de Contato/efeitos adversos , Lentes de Contato/parasitologia , Cães , Feminino , Humanos , Concentração Inibidora 50 , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Células Madin Darby de Rim Canino , México , Camundongos , Camundongos Endogâmicos BALB C , Midriáticos/administração & dosagem , Netilmicina/administração & dosagem , Netilmicina/farmacologia , Testes de Sensibilidade Parasitária , Fenilefrina/administração & dosagem , Tropicamida/administração & dosagem , Voriconazol/farmacologia
4.
Colloids Surf B Biointerfaces ; 173: 725-732, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384269

RESUMO

Acanthamoeba keratitis is an ophthalmic disease with no specific treatment that specially affects contact lens users. The silencing of serine phosphatase (SP) and glycogen phosphorylase (GP) proteins produced by Acanthamoeba has been shown to significantly reduce the cytopathic effect, although no vehicle was proposed yet to deliver the siRNA sequences to the trophozoites. In this study, PEGylated cationic liposomes were proposed and optimized using Box-Behnken design. The influence of DOTAP:DOPE ratio, DSPE-PEG concentration, and siRNA/DOTAP charge ratio were evaluated over both biological response and physicochemical properties of liposomes. The ratio of DOTAP:DOPE had an effect in the trophozoite activity whereas the charge ratio influenced both size and protease activity. The predicted values were very close to the observed values, yielding a formulation with good activity and toxicity profile, which was used in the following experiments. A murine model of ocular keratitis was treated with siGP + siSP-loaded liposomes, as well as their respective controls, and combined treatment of liposomes and chlorhexidine. After 15 days of eight daily administrations, the liposomal complex combined with chlorhexidine was the only treatment able to reverse the more severe lesions associated with keratitis. There was 60% complete regression in corneal damage, with histological sections demonstrating the presence of an integral epithelium, without lymphocytic infiltrate. The set of results demonstrate the efficacy of a combined therapy based on siRNA with classical drugs for a better prognosis of keratitis caused by Acanthamoeba.


Assuntos
Ceratite por Acanthamoeba/terapia , Acanthamoeba/efeitos dos fármacos , Clorexidina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Proteínas de Protozoários/antagonistas & inibidores , Trofozoítos/efeitos dos fármacos , Acanthamoeba/enzimologia , Acanthamoeba/patogenicidade , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/patologia , Animais , Córnea/efeitos dos fármacos , Córnea/parasitologia , Córnea/patologia , Modelos Animais de Doenças , Esquema de Medicação , Composição de Medicamentos/métodos , Quimioterapia Combinada , Análise Fatorial , Ácidos Graxos Monoinsaturados/química , Regulação da Expressão Gênica , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Humanos , Lipossomos/metabolismo , Fosfatidiletanolaminas/química , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Polietilenoglicóis/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Compostos de Amônio Quaternário/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Trofozoítos/enzimologia , Trofozoítos/patogenicidade
5.
Chem Biol Drug Des ; 90(3): 406-416, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28135787

RESUMO

Current treatments for Acanthamoeba keratitis are unspecific. Because of the presence of the resilient cyst form of the parasite, the infection is persistent. Silencing the key protein of cyst formation, glycogen phosphorylase, has shown potential for reducing encystment processes of the Acanthamoeba trophozoite. However, a suitable carrier to protect and deliver siRNA sequences is still needed. DOTAP: DOPE:DSPE-PEG liposomes were prepared by three different techniques and used to associate a therapeutic siRNA sequence. Liposomes prepared by film hydration followed by membrane extrusion were considered the most adequate ones with average size of 250 nm and zeta potential of +45 mV, being able to associate siRNA for at least 24 hr in culture medium. siRNA-liposomes could inhibit up to 66% of the encystment process. Cell viability studies demonstrated MTT reduction capacity higher than 80% after 3 hr incubation with this formulation. After 24 hr of incubation, LDH activity ranged for both the formulations from around 4% to 40%. In vivo tolerance studies in mice showed no macroscopic alteration in the eye structures up to 24 hr after eight administrations during 1 day. Histological studies showed regular tissue architecture without any morphological alteration. Overall, these results suggest that the formulations developed are a promising new strategy for the treatment of ocular keratitis caused by Acanthamoeba spp.


Assuntos
Acanthamoeba/efeitos dos fármacos , Córnea/efeitos dos fármacos , Lipossomos/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Acanthamoeba/enzimologia , Acanthamoeba/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Córnea/metabolismo , Córnea/parasitologia , Córnea/patologia , Olho/efeitos dos fármacos , Olho/metabolismo , Olho/parasitologia , Olho/patologia , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Humanos , Lipossomos/toxicidade , Masculino , Camundongos , Tamanho da Partícula , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , RNA Interferente Pequeno/química
6.
Parasitol Res ; 115(2): 535-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26446087

RESUMO

Amoebic keratitis and granulomatous amoebic encephalitis are caused by some strains of free-living amoebae of the genus Acanthamoeba. In the case of keratitis, one of the greatest problems is the disease recurrence due to the resistance of parasites, especially the cystic forms, to the drugs that are currently used. Some essential oils of plants have been used as potential active agents against this protist. Thus, the aim of this study was to determine the amebicidal activity of essential oils from plants of the genus Lippia against Acanthamoeba polyphaga trophozoites. To that end, 8 × 10(4) trophozoites were exposed for 24 h to increasing concentrations of essential oils from Lippia sidoides, Lippia gracilis, Lippia alba, and Lippia pedunculosa and to their major compounds rotundifolone, carvone, and carvacrol. Nearly all concentrations of oils and compounds showed amebicidal activity. The IC50 values for L. sidoides, L. gracilis L. alba, and L. pedunculosa were found to be 18.19, 10.08, 31.79, and 71.47 µg/mL, respectively. Rotundifolone, carvacrol, and carvone were determined as the major compounds showing IC50 of 18.98, 24.74, and 43.62 µg/mL, respectively. With the exception of oil from L. alba, the other oils evaluated showed low cytotoxicity in the NCI-H292 cell line. Given these results, the oils investigated here are promising sources of compounds for the development of complementary therapy against amoebic keratitis and granulomatous amoebic encephalitis and can also be incorporated into cleaning solutions to increase their amebicidal efficiency.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Verbenaceae/química , Amebicidas/química , Animais , Monoterpenos Cicloexânicos , Cimenos , Humanos , Lippia , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química , Trofozoítos/efeitos dos fármacos
7.
Parasitol Res ; 113(2): 755-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265059

RESUMO

Pathogenic strains of Acanthamoeba genus are the causative agents of fatal granulomatous amoebic encephalitis and a serious sight-threatening infection of the eye known as Acanthamoeba keratitis. In a previous study, Acanthamoeba strains were isolated from nasal swabs collected from healthy individuals in Peru. In the present study, the pathogenic potential of the isolated strains was established based on temperature and osmotolerance assays as well as the secretion rate of extracellular proteases. Based on these experiments, four strains that showed the highest pathogenic potential were selected for sensitivity assays against two molecules (voriconazole and chlorhexidine) which are currently used for the treatment of Acanthamoeba infections. After performing sensitivity and activity assays, it was found that both drugs were active against the tested strains. However, voriconazole showed higher activity against the studied strains compared to chlorhexidine. Therefore, voriconazole should be established as a first-line treatment against Acanthamoeba infections at least in the studied region of Peru.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Acanthamoeba/isolamento & purificação , Acanthamoeba/patogenicidade , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/uso terapêutico , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Humanos , Testes de Sensibilidade Parasitária , Peru , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico , Voriconazol
8.
Mem Inst Oswaldo Cruz ; 108(7): 832-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24271042

RESUMO

Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.


Assuntos
Acanthamoeba/patogenicidade , Amebíase/parasitologia , Cultura Axênica , Virulência/efeitos dos fármacos , Acanthamoeba/efeitos dos fármacos , Animais , Masculino , Ratos Wistar , Fatores de Tempo
9.
Mem. Inst. Oswaldo Cruz ; 108(7): 832-835, 1jan. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-696013

RESUMO

Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.


Assuntos
Animais , Masculino , Cultura Axênica , Acanthamoeba/patogenicidade , Amebíase/parasitologia , Virulência/efeitos dos fármacos , Acanthamoeba/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo
10.
Acta Parasitol ; 58(3): 304-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23990426

RESUMO

The present study investigated the susceptibility of Acanthamoeba spp. trophozoites to two multipurpose systems for cleaning and maintenance of contact lenses. Three strains of trophozoites from the ATCC (A. castellani T4, A. castellani Neff, and A. polyphaga) and two Acanthamoeba isolates obtained from swimming pools (PT5 and PO1) were placed in monoxenic culture. To test their survival in cleaning solutions for contact lenses, the trophozoites were exposed for 4 and 24 h to two multipurpose solutions (A and B), and were then inoculated into a new monoxenic culture. Amoebic growth on the plates was observed after 72 h of incubation. Trophozoites from all three ATCC strains and one isolate from a swimming pool (PO1) grew in all plates after 4 h of exposure to solutions A and B. After 24 h, the ATCC strains and the PO1 isolate showed growth in most of the plates treated. Only the PT5 isolate showed susceptibility to both solutions over the time intervals tested. The two solutions were not completely effective against most strains and isolates over the time intervals tested. These results are important, since species of Acanthamoeba are widely distributed in the environment and are potential agents of eye pathologies.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antiprotozoários/farmacologia , Soluções para Lentes de Contato/farmacologia , Acanthamoeba/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA