Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 648: 123613, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977286

RESUMO

The oral administration is the route preferred by patients due to its multiple advantages. In the case of biopharmaceuticals, due to their low stability and absorption in the intestine, these molecules must be administered by injectable routes. To circumvent these problems, several strategies have been studied, among which the use of nanosystems, such as polymersomes, can be highlighted. In this work the potential of poloxamer 401 polymersomes as a system for oral delivery of antibodies was evaluated. IgG-FITC-loaded poloxamer 401 polymerosomes were initially used to assess whether it improves intestinal epithelial permeation in Caco-2 cell monolayers. Subsequently, epithelial/macrophage co-culture model was used to evaluate the ability of poloxamer 401 polymersomes containing adalimumab to reduce proinflammatory cytokine levels. The data showed that polymersome-encapsulated IgG increased the transport across intestinal Caco-2 monolayers 2.7-fold compared to the antibody in solution. Also, when comparing the groups of blank polymersomes with polymersomes containing adalimumab, decreases of 1.5-, 5.5-, and 2.4-fold in TNF-α concentrations were observed for the polymersomes containing 1.5, 3.75, and 15 µg/mL of adalimumab, respectively. This could indicate a possibility for the oral administration of biopharmaceuticals which would revolutionize many conditions that require the systemic administration such as in inflammatory bowel disease.


Assuntos
Produtos Biológicos , Poloxâmero , Humanos , Células CACO-2 , Adalimumab/metabolismo , Mucosa Intestinal/metabolismo , Produtos Biológicos/metabolismo , Imunoglobulina G/metabolismo
2.
Immunol Res ; 66(3): 392-405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29855993

RESUMO

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNFα drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNFα adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNFα and FcRγ did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNFα in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNFα activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of "non-inferiority," part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients' welfare.


Assuntos
Adalimumab/imunologia , Anticorpos Monoclonais/imunologia , Medicamentos Biossimilares , Proteínas Recombinantes de Fusão/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab/genética , Adalimumab/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Células CHO , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
J Pharm Biomed Anal ; 155: 235-240, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29653347

RESUMO

Physicochemical and structural properties of proteins used as active pharmaceutical ingredients of biopharmaceuticals are determinant to carry out their biological activity. In this regard, the assays intended to evaluate functionality of biopharmaceuticals provide confirmatory evidence that they contain the appropriate physicochemical properties and structural conformation. The validation of the methodologies used for the assessment of critical quality attributes of biopharmaceuticals is a key requirement for manufacturing under GMP environments. Herein we present the development and validation of a flow cytometry-based methodology for the evaluation of adalimumab's affinity towards membrane-bound TNFα (mTNFα) on recombinant CHO cells. This in vitro methodology measures the interaction between an in-solution antibody and its target molecule onto the cell surface through a fluorescent signal. The characteristics evaluated during the validation exercise showed that this methodology is suitable for its intended purpose. The assay demonstrated to be accurate (r2 = 0.92, slope = 1.20), precise (%CV ≤ 18.31) and specific (curve fitting, r2 = 0.986-0.997) to evaluate binding of adalimumab to mTNFα. The results obtained here provide evidence that detection by flow cytometry is a viable alternative for bioassays used in the pharmaceutical industry. In addition, this methodology could be standardized for the evaluation of other biomolecules acting through the same mechanism of action.


Assuntos
Adalimumab/metabolismo , Bioensaio/métodos , Membrana Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetulus , Citometria de Fluxo/métodos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA