Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Genet ; 101(1): 134-141, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664255

RESUMO

Prediction of pathogenicity of rare copy number variations (CNVs), a genomic alteration known to contribute to the etiology of autism spectrum disorder (ASD), represents a serious limitation to interpreting genetic tests, particularly for genetic counseling purposes. Chromosomal microarray analysis (CMA) was conducted in a unique collection of 144 Brazilian individuals with ASD of strong European and African ancestries. Rare CNVs were detected in 39 patients: 41 of unknown significance (VUS), four pathogenic and one likely pathogenic CNVs (clinical yield of 4.1%; 5/122). Based on gene content and recurrence in three large cohorts [a Brazilian neurodevelopmental disorder cohort, the autism MSSNG cohort, and the Canadian-based Centre for Applied Genomics microarray database], this work strengthened the pathogenicity of 14 genes (FAT1, CAMK4, BIRC6, DPP6, CSMD1, CTNNA3, CDH8/CDH11, CDH13, OR1C1, CNTN6, CNTNAP4, FGF2 and PTPRN2) within 14 CNVs. Notably, enrichment of cell adhesion proteins to ASD etiology was identified (p < 0.05), highlighting the importance of these gene families in the etiology of ASD.


Assuntos
Alelos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Adesão Celular/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Adolescente , Adulto , Brasil , Criança , Pré-Escolar , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Adulto Jovem
2.
Foodborne Pathog Dis ; 18(4): 243-252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337940

RESUMO

Listeria monocytogenes is a foodborne pathogen of global relevance that causes outbreaks and sporadic cases of listeriosis, acquired through the consumption of contaminated products, including milk or meat products and ready-to-eat meat products subjected to intensive handling. The objective of the present study was to classify L. monocytogenes isolated from various food-related sources in the Federal District of Brazil and surrounding areas to sequence internalin A (inlA) genes from these isolates and assess their adhesion and invasion capacity using Caco-2 cells. In addition, 15 were classified as group I, 3 as group II, and 7 classified as group IV. Premature stop codons (PMSCs) at the nucleotide position 976 (GAA→TAA) of the inlA gene were identified in 5 of the 25 isolates. Adhesion and invasion tests in Caco-2 cells showed that all the isolates were capable of adhesion and cellular invasion, with isolates containing PMSCs exhibiting on average higher invasion capacity than those without PMSCs (p = 0.041) and a median of adhesion very distinctive from those without stop codons. These results are the first report of PMSCs in the inlA gene of L. monocytogenes from the Federal District of Brazil and Brazil.


Assuntos
Proteínas de Bactérias/genética , Adesão Celular/genética , Microbiologia de Alimentos , Listeria monocytogenes/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Brasil , Células CACO-2 , Códon sem Sentido/isolamento & purificação , Humanos , Análise de Sequência
3.
Cells ; 9(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053687

RESUMO

Cell migration is critical for several physiological and pathophysiological processes. It depends on the coordinated action of kinases, phosphatases, Rho-GTPases proteins, and Ca2+ signaling. Interestingly, ubiquitination events have emerged as regulatory elements of migration. Thus, the role of proteins involved in ubiquitination processes could be relevant to a complete understanding of pro-migratory mechanisms. KCTD5 is a member of Potassium Channel Tetramerization Domain (KCTD) proteins that have been proposed as a putative adaptor for Cullin3-E3 ubiquitin ligase and a novel regulatory protein of TRPM4 channels. Here, we study whether KCTD5 participates in cell migration-associated mechanisms, such as focal adhesion dynamics and cellular spreading. Our results show that KCTD5 CRISPR/Cas9- and shRNA-based depletion in B16-F10 cells promoted an increase in cell migration and cell spreading, and a decrease in the focal adhesion area, consistent with an increased focal adhesion disassembly rate. The expression of a dominant-negative mutant of Rho-GTPases Rac1 precluded the KCTD5 depletion-induced increase in cell spreading. Additionally, KCTD5 silencing decreased the serum-induced Ca2+ response, and the reversion of this with ionomycin abolished the KCTD5 knockdown-induced decrease in focal adhesion size. Together, these data suggest that KCTD5 acts as a regulator of cell migration by modulating cell spreading and focal adhesion dynamics through Rac1 activity and Ca2+ signaling, respectively.


Assuntos
Sinalização do Cálcio/fisiologia , Canais de Potássio/metabolismo , Animais , Cálcio/metabolismo , Adesão Celular/genética , Linhagem Celular , Movimento Celular/genética , Adesões Focais/genética , Humanos , Camundongos , Canais de Potássio/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Parasit Vectors ; 13(1): 511, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33050923

RESUMO

BACKGROUND: Larval development in an intermediate host gastropod snail of the genus Biomphalaria is an obligatory component of the life-cycle of Schistosoma mansoni. Understanding of the mechanism(s) of host defense may hasten the development of tools that block transmission of schistosomiasis. The allograft inflammatory factor 1, AIF, which is evolutionarily conserved and expressed in phagocytes, is a marker of macrophage activation in both mammals and invertebrates. AIF enhances cell proliferation and migration. The embryonic cell line, termed Bge, from Biomphalaria glabrata is a versatile resource for investigation of the snail-schistosome relationship since Bge exhibits a hemocyte-like phenotype. Hemocytes perform central roles in innate and cellular immunity in gastropods and in some cases can kill the parasite. However, the Bge cells do not kill the parasite in vitro. METHODS: Bge cells were transfected by electroporation with plasmid pCas-BgAIFx4, encoding the Cas9 nuclease and a guide RNA specific for exon 4 of the B. glabrata AIF (BgAIF) gene. Transcript levels for Cas9 and for BgAIF were monitored by reverse-transcription-PCR and, in parallel, adhesion of gene-edited Bge cells during co-culture with of schistosome sporocysts was assessed. RESULTS: Gene knockout manipulation induced gene-disrupting indels, frequently 1-2 bp insertions and/or 8-30 bp deletions, at the programmed target site; a range from 9 to 17% of the copies of the BgAIF gene in the Bge population of cells were mutated. Transcript levels for BgAIF were reduced by up to 73% (49.5 ± 20.2% SD, P ≤ 0.05, n = 12). Adherence by BgAIF gene-edited (ΔBgAIF) Bge to sporocysts diminished in comparison to wild type cells, although cell morphology did not change. Specifically, as scored by a semi-quantitative cell adherence index (CAI), fewer ΔBgAIF than control wild type cells adhered to sporocysts; control CAI, 2.66 ± 0.10, ΔBgAIF, 2.30 ± 0.22 (P ≤ 0.01). CONCLUSIONS: The findings supported the hypothesis that BgAIF plays a role in the adherence of B. glabrata hemocytes to sporocysts during schistosome infection in vitro. This demonstration of the activity of programmed gene editing will enable functional genomics approaches using CRISPR/Cas9 to investigate additional components of the snail-schistosome host-parasite relationship.


Assuntos
Biomphalaria , Proteínas de Ligação ao Cálcio/genética , Adesão Celular/genética , Schistosoma mansoni/patogenicidade , Animais , Biomphalaria/citologia , Biomphalaria/genética , Biomphalaria/parasitologia , Sistemas CRISPR-Cas , Linhagem Celular/parasitologia , Edição de Genes/métodos , Técnicas de Inativação de Genes , Hemócitos/imunologia , Interações Hospedeiro-Parasita , Humanos , Proteínas dos Microfilamentos , Schistosoma mansoni/parasitologia , Esquistossomose/transmissão
5.
Nutrients ; 12(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316129

RESUMO

BACKGROUND: Passiflora setacea (PS) is a passionfruit variety of the Brazilian savannah and is a rich source of plant food bioactives with potential anti-inflammatory activity. This study aimed to investigate the effect of an acute intake of PS juice upon inflammation, metabolic parameters, and gene expression on circulating immune cells in humans. METHODS: Overweight male volunteers (n = 12) were enrolled in two double-blind placebo-controlled studies. Blood samples were collected from fasting volunteers 3 h after the consumption of 250 mL of PS juice or placebo (PB). Metabolic parameters (insulin, glucose, total cholesterol, high-density lipoprotein (LDL), high-density lipoprotein (HDL), and total triglycerides) and circulating cytokines were evaluated (study 1). Peripheral blood mononuclear cell (PBMC) from the same subjects were isolated and RNA was extracted for transcriptomic analyses using microarrays (study 2). RESULTS: Insulin and homeostatic model assessment for insulin resistance (HOMA-IR) levels decreased statistically after the PS juice intake, whereas HDL level increased significantly. Interleukin (IL)-17A level increased after placebo consumption, whereas its level remained unchanged after PS juice consumption. Nutrigenomic analyses revealed 1327 differentially expressed genes after PS consumption, with modulated genes involved in processes such as inflammation, cell adhesion, or cytokine-cytokine receptor. CONCLUSION: Taken together, these clinical results support the hypothesis that PS consumption may help the prevention of cardiometabolic diseases.


Assuntos
Suplementos Nutricionais , Sucos de Frutas e Vegetais , Expressão Gênica , Sobrepeso/genética , Sobrepeso/metabolismo , Passiflora , Adulto , Adesão Celular/genética , HDL-Colesterol/metabolismo , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Resistência à Insulina , Interleucina-17/metabolismo , Masculino , Pessoa de Meia-Idade , Sobrepeso/imunologia , Receptores de Citocinas/genética , Fatores de Risco
6.
Mycopathologia ; 185(3): 415-424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277380

RESUMO

Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida/fisiologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/genética , Candida/ultraestrutura , Adesão Celular/genética , Adesão Celular/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Microscopia Eletrônica de Varredura , Nanotecnologia/tendências , Elementos Reguladores de Transcrição/genética , Elementos Reguladores de Transcrição/fisiologia
7.
FEBS J ; 287(16): 3449-3471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958362

RESUMO

B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.


Assuntos
Linfócitos B/metabolismo , Membrana Celular/metabolismo , Movimento Celular/genética , Endocitose/genética , Tetraspaninas/genética , Linfócitos B/ultraestrutura , Sistemas CRISPR-Cas , Adesão Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Microscopia Eletrônica , Fagocitose/genética , Estresse Mecânico , Tetraspaninas/metabolismo
8.
Brain Res Bull ; 155: 112-118, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816405

RESUMO

Focal cortical dysplasia (FCD) is a malformation of cortical development which is strongly associated with drug-refractory epilepsy. Certain studies have demonstrated an increase in mTOR signaling in patients with FCD on the basis of observation of phosphorylated molecules. The aim of the present study was to verify the differences in genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in iPSCs derived from the Focal Cortical Dysplasia. Fibroblasts were obtained from the skin biopsies of patients with FCD (n = 2) and controls (n = 2). iPSCs were generated by exposing the fibroblasts to viral vectors that contained the Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC genes) responsible for promoving cell reprogramation. The fibroblasts and iPSCs were tested during different phases of neurodifferentiation for migration capacity and expression of the genes involved in the PI3K pathway. Fibroblasts of patients with FCD migrated with greater intensity during the first two time points of analyses. iPSCs did not exhibit any difference in cell migration between the groups. Fibroblasts, brain tissue, and iPSCs of the patients with FCD exhibited a significant reduction in the relative expression values of 4EBP-1. During neurodevelopment, the iPSCs from patients with FCD exhibited a reduction in the expression of cIAP-1, cIAP-2, PI3K, ß-Catenin and 4EBP-1 gene. We suggest that the differences observed in the migration potential of adult cells and in the gene expression related to the fundamental processes involved in normal brain development during the neurodifferentiation process might be associated with cortical alteration in the patients with FCD.


Assuntos
Apoptose/genética , Adesão Celular/genética , Proliferação de Células/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Malformações do Desenvolvimento Cortical/genética , Neurogênese/genética , Adulto , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Pessoa de Meia-Idade
9.
FASEB J ; 33(8): 9434-9452, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112396

RESUMO

Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective cationic channel involved in a wide variety of physiologic and pathophysiological processes. Bioinformatics analyses of the primary sequence of TRPM4 allowed us to identify a putative motif for interaction with end-binding (EB) proteins, which are microtubule plus-end tracking proteins. Here, we provide novel data suggesting that TRPM4 interacts with EB proteins. We show that mutations of the putative EB binding motif abolish the TRPM4-EB interaction, leading to a reduced expression of the mature population of the plasma membrane channel and instead display an endoplasmic reticulum-associated distribution. Furthermore, we demonstrate that EB1 and EB2 proteins are required for TRPM4 trafficking and functional activity. Finally, we demonstrated that the expression of a soluble fragment containing the EB binding motif of TRPM4 reduces the plasma membrane expression of the channel and affects TRPM4-dependent focal adhesion disassembly and cell invasion processes.-Blanco, C., Morales, D., Mogollones, I., Vergara-Jaque, A., Vargas, C., Álvarez, A., Riquelme, D., Leiva-Salcedo, E., González, W., Morales, D., Maureira, D., Aldunate, I., Cáceres, M., Varela, D., Cerda, O. EB1- and EB2-dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion.


Assuntos
Adesões Focais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Biotinilação/fisiologia , Células COS , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Chlorocebus aethiops , Eletrofisiologia , Imunofluorescência , Humanos , Immunoblotting , Proteínas Associadas aos Microtúbulos/genética , Simulação de Dinâmica Molecular , Mutação/genética , Plasmídeos/genética , Canais de Cátion TRPM/genética
10.
Cell Death Dis ; 10(4): 299, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931931

RESUMO

About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.


Assuntos
Oxirredutases do Álcool/metabolismo , Adesão Celular/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome Metabólica/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , Oxirredutases do Álcool/genética , Animais , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Xenoenxertos/citologia , Xenoenxertos/metabolismo , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Metástase Neoplásica , Células PC-3 , Neoplasias da Próstata/patologia , Pseudópodes/genética , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA