Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39057942

RESUMO

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Assuntos
Aflatoxinas , Aspergillus , Indústria de Laticínios , Fusarium , Moscas Domésticas , Estações do Ano , Zearalenona , Animais , Fusarium/metabolismo , México , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Aflatoxinas/biossíntese , Moscas Domésticas/microbiologia , Contaminação de Alimentos/análise , Fazendas
2.
Braz J Microbiol ; 52(2): 821-835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33447936

RESUMO

Antimicrobial peptides (AMPs) are biologically active molecules that can eradicate bacteria by destroying the bacterial membrane structure, causing the bacteria to rupture. However, little is known about the extent and effect of AMPs on filamentous fungi. In this study, we synthesized small molecular polypeptides by an inexpensive heat conjugation approach and examined their effects on the growth of Aspergillus flavus and its secondary metabolism. The antimicrobial agents significantly inhibited aflatoxin production, conidiation, and sclerotia formation in A. flavus. Furthermore, we found that the expression of aflatoxin structural genes was significantly inhibited, and the intracellular reactive oxygen species (ROS) level was reduced. Additionally, the antimicrobial agents can change membrane permeability. Overall, our results demonstrated that antimicrobial agents, safe to mammalian cells, have an obvious impact on aflatoxin production, which indicated that antimicrobial agents may be adopted as a new generation of potential agents for controlling aflatoxin contamination.


Assuntos
Aflatoxinas/biossíntese , Antifúngicos/síntese química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
3.
Environ Microbiol ; 22(8): 3522-3534, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515100

RESUMO

In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/genética , Efeito Fundador , Variação Genética/genética , Aflatoxinas/genética , Aspergillus flavus/metabolismo , Agentes de Controle Biológico/metabolismo , Impressões Digitais de DNA , México , Repetições de Microssatélites/genética , Estados Unidos , Zea mays/microbiologia
4.
Sci Rep ; 10(1): 5508, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218462

RESUMO

A study was conducted to determine the cytosolic in vitro hepatic enzymatic kinetic parameters Vmax, KM, and intrinsic clearance (CLint) for aflatoxin B1 (AFB1) reductase [aflatoxicol (AFL) production] and AFL dehydrogenase (AFB1 production) in four commercial poultry species (chicken, quail, turkey and duck). Large differences were found in AFB1 reductase activity, being the chicken the most efficient producer of AFL (highest CLint value). Oxidation of AFL to AFB1 showed only slight differences among the different poultry species. On average all species produced AFB1 from AFL at a similar rate, except for the turkey which produced AFB1 from AFL at a significantly lower rate than chickens and quail, but not ducks. Although the turkey and duck showed differences in AFL oxidation Vmax and KM parameters, their CLint values did not differ significantly. The ratio AFB1 reductase/AFL dehydrogenase enzyme activity was inversely related to the known in vivo sensitivity to AFB1 being highest for the chicken, lowest for the duck and intermediate for turkeys and quail. Since there is no evidence that AFL is a toxic metabolite of AFB1, these results suggest that AFL production is a detoxication reaction in poultry. Conversion of AFB1 to AFL prevents the formation of the AFB1-8,9-exo-epoxide which, upon conversion to AFB1-dihydrodiol, is considered to be the metabolite responsible for the acute toxic effects of AFB1.


Assuntos
Aflatoxina B1/farmacocinética , Aflatoxina B1/toxicidade , Aflatoxinas/biossíntese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Galinhas , Citosol/metabolismo , Resistência a Medicamentos , Patos , Inativação Metabólica , Aves Domésticas , Codorniz , Perus
5.
Mycotoxin Res ; 36(2): 173-180, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31828531

RESUMO

Aspergillus nomius is a potent producer of aflatoxins B and G and is one of the most common species of fungi found in Brazil nuts. Temperature is considered a major abiotic factor that influences fungal colonization and aflatoxin production in nuts during pre- and post-harvest. Therefore, assessment of the response of aflatoxigenic species to different temperatures is important to add information about the understanding of aflatoxin production by Aspergillus nomius and may help in the development of new strategies to prevent aflatoxin contamination. The aim of this study was to evaluate the effect of temperature (25, 30, and 35 °C) on the radial growth, aflatoxin production (B and G), and aflatoxin gene expression of seven A. nomius strains isolated from Brazil nuts. The optimal temperature for growth was 30 °C and was also the best condition for the expression of the aflR, aflD, and aflQ genes. However, maximum production of aflatoxins B and G occurred at 25 °C. Interestingly, high expression of the structural gene aflQ was observed in the maximum aflatoxin production condition (25 °C). The present study demonstrates that temperature may influence aflatoxin production by A. nomius. The combination of molecular and physiological data aids the understanding of the aflatoxigenic species response to different temperatures and can assist in predicting the driving environmental factors that influence aflatoxin contamination of Brazil nuts.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/crescimento & desenvolvimento , Aspergillus/genética , Bertholletia/microbiologia , Microbiologia de Alimentos , Temperatura , Aspergillus/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/genética , Expressão Gênica
6.
Rev. argent. microbiol ; 51(4): 292-301, dic. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1057392

RESUMO

Abstract Aflatoxin is a carcinogenic secondary metabolite produced mainly by Aspergillus flavus and Aspergillus parasiticus, which can seriously endanger the health of humans and animals. Oxidative stress is a common defense response, and it is known that reactive oxygen species (ROS) can induce the synthesis of a series of secondary metabolites, including aflatoxin. By using mutants lacking the afap 1 gene, the role of afap 1 gene in oxidative stress and aflatoxin synthesis was assessed. The growth of the mutant strains was significantly inhibited by the increase in the concentration of H2O2, inhibition was complete at 40mmol/l. However, in the quantitative analysis by HPLC, the concentration of AFB1 increased with the increased H 2O 2 until 10mmol/l. Following an analysis based on the information provided by the NCBI BLAST analysis, it was assumed that Afap1, a basic leucine zipper (bZIP) transcription factor, was associated with the oxidative stress in this fungus. Treatment with 5mmol/l H 2O 2 completely inhibited the growth of the mutant strains in afap 1 but did not affect the growth of the CA14PTs strain (non-mutant strain). In addition, the concentration of AFB 1 in the mutant strains was approximately V of that observed in the CA14PTs strain. These results suggested that Afap1 plays a key role in the regulation of oxidative stress and aflatoxin production in A. flavus. ©2018 Published by Elsevier España, S.L.U. on behalf of Asociación Argentina de Microbiología. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/ licenses/by-nc-nd/4.0/).


Resumen La aflatoxina es un metabolito secundario cancerígeno producido principalmente por Aspergillus flavus y Aspergillus parasiticus, que pone en riesgo grave a la salud de los humanos y los animales. El estrés oxidativo es una respuesta de defensa común, y es sabido que las especies reactivas de oxígeno (ROS) pueden inducir la síntesis de una serie de metabolitos secundarios, incluida la aflatoxina. Empleando mutantes carentes del gen afap1 se evaluó el papel de Afap1 en el estrés oxidativo y la síntesis de aflatoxinas. El crecimiento de las cepas mutadas se vio significativamente inhibido con el aumento de la concentración de H 2O 2, la inhibición fue completa a 40mmol/l. Sin embargo, en el análisis cuantitativo por HPLC, la concentración de la aflatoxina AFBi aumentó con el aumento de la concentración de H 2O 2 hasta 10mmol/l. Tras un análisis apoyado en la información provista por la herramienta NCBI BLAST, se supuso que Afap1, un factor de transcripción de la cremallera de leucina básica (bZIP), estaba asociado con el estrés oxidativo en este hongo. El tratamiento con 5mmol/l de H 2O 2 inhibió completamente el crecimiento de las cepas mutantes en afap1, pero no afectó el crecimiento de la cepa CA14PTs (cepa no mutada). Además, la concentración de AFB 1 en las cepas mutadas fue de aproximadamente 1/4 de la observada en CA14PTs. Estos resultados sugieren que Afap1 juega un papel clave en la regulación del estrés oxidativo y la producción de aflatoxinas en A. flavus.


Assuntos
Aspergillus flavus/patogenicidade , Aflatoxinas/biossíntese , Fatores de Transcrição/análise , Estresse Oxidativo/fisiologia
7.
Rev Argent Microbiol ; 51(4): 292-301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30905507

RESUMO

Aflatoxin is a carcinogenic secondary metabolite produced mainly by Aspergillus flavus and Aspergillus parasiticus, which can seriously endanger the health of humans and animals. Oxidative stress is a common defense response, and it is known that reactive oxygen species (ROS) can induce the synthesis of a series of secondary metabolites, including aflatoxin. By using mutants lacking the afap 1 gene, the role of afap1 gene in oxidative stress and aflatoxin synthesis was assessed. The growth of the mutant strains was significantly inhibited by the increase in the concentration of H2O2, inhibition was complete at 40mmol/l. However, in the quantitative analysis by HPLC, the concentration of AFB1 increased with the increased H2O2 until 10mmol/l. Following an analysis based on the information provided by the NCBI BLAST analysis, it was assumed that Afap1, a basic leucine zipper (bZIP) transcription factor, was associated with the oxidative stress in this fungus. Treatment with 5mmol/l H2O2 completely inhibited the growth of the mutant strains in afap 1 but did not affect the growth of the CA14PTs strain (non-mutant strain). In addition, the concentration of AFB1 in the mutant strains was approximately » of that observed in the CA14PTs strain. These results suggested that Afap1 plays a key role in the regulation of oxidative stress and aflatoxin production in A. flavus.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Estresse Oxidativo/fisiologia , Aspergillus flavus/metabolismo
8.
Int J Food Microbiol ; 292: 91-100, 2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30584973

RESUMO

Aspergilli are common contaminants of food and feed and a major source of mycotoxins. In this study, 87 Aspergillus strains were isolated from beans from 14 different cities in Brazil and identified to the species level based on partial calmodulin and ß-tubulin sequence data. All green spored isolates belonged to section Flavi and were identified as A. flavus (n = 39) or A. pseudocaelatus (n = 1). All black spored isolates belonged to section Nigri and were identified as A. niger (n = 24) or A. luchuensis (n = 10), while the yellow spored strains were identified as A. westerdijkiae (n = 7), A. ostianus (n = 3), A. ochraceus (n = 1) or A. wentii (n = 2). The toxigenic potential of these Aspergillus strains from beans was studied by the prospection of genes in three of the major mycotoxin clusters: aflatoxin (seven genes checked), ochratoxin A (four genes) and fumonisin (ten genes and two intergenic regions). Genes involved in the biosynthesis of aflatoxin were only detected in A. flavus isolates: 17/39 A. flavus isolates proved to contain all the aflatoxin genes tested, the others missed one or more genes. The full complement of fumonisin biosynthesis genes was identified in all A. niger isolates. Finally, no genes for ochratoxin A were detected in any of the isolates. Our work suggests that aflatoxin production by some A. flavus strains and fumonisin production by A. niger isolates form the largest mycotoxin risks in Brazilian beans.


Assuntos
Aspergillus/classificação , Fabaceae/microbiologia , Proteínas Fúngicas/genética , Aflatoxinas/biossíntese , Sequência de Aminoácidos , Aspergillus/genética , Aspergillus/isolamento & purificação , Brasil , DNA Fúngico/isolamento & purificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fumonisinas/metabolismo , Família Multigênica , Micotoxinas/biossíntese , Ocratoxinas/biossíntese , Análise de Sequência de DNA
9.
Foodborne Pathog Dis ; 13(8): 434-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27224419

RESUMO

The aims of the present study were to monitor the production of aflatoxin B1 (AFB1) and mycelial growth, and to evaluate the expression of genes directly and indirectly involved in the biosynthesis of aflatoxins by Aspergillus flavus isolated from Brazil nuts. Six previously identified A. flavus strains were grown on coconut agar at 25°C for up to 10 days. Mycotoxins were separated by high-performance liquid chromatography and fungal growth was measured daily using the diametric mycelial growth rate. Transcriptional analysis was performed by real-time polymerase chain reaction (PCR) after 2 and 7 d of incubation using specific primers (aflR, aflD, aflP, lipase, metalloprotease, and LaeA). Three (50%) of the six A. flavus isolates produced AFB1 (ICB-1, ICB-12, and ICB-54) and three (50%) were not aflatoxigenic (ICB-141, ICB-161, and ICB-198). Aflatoxin production was observed from d 2 of incubation (1.5 ng/g for ICB-54) and increased gradually with time of incubation until d 10 (15,803.6 ng/g for ICB-54). Almost all A. flavus isolates exhibited a similar gene expression pattern after 2 d of incubation (p > 0.10). After 7 d of incubation, the LaeA (p < 0.05) and metalloprotease (p < 0.05) genes were the most expressed by nonaflatoxigenic strains, whereas aflatoxigenic isolates exhibited higher expression of the aflR (p < 0.05) and aflD genes (p < 0.05). Our results suggest that the expression of aflR and aflD is correlated with aflatoxin production in A. flavus and that overexpression of aflR could affect the transcriptional and aflatoxigenic pattern (ICB-54). Elucidation of the molecular mechanisms that regulate the secondary metabolism of toxigenic fungi may permit the rational silencing of the genes involved and consequently the programmed inhibition of aflatoxin production. Knowledge of the conditions, under which aflatoxin genes are expressed, should contribute to the development of innovative and more cost-effective strategies to reduce and prevent aflatoxin contamination in Brazil nuts.


Assuntos
Aflatoxinas/biossíntese , Aflatoxinas/genética , Aspergillus flavus/genética , Bertholletia/microbiologia , Aflatoxina B1/biossíntese , Aflatoxina B1/genética , Aspergillus flavus/crescimento & desenvolvimento , Contaminação de Alimentos , Expressão Gênica , Genes Fúngicos , Micélio/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real
10.
Lett Appl Microbiol ; 62(1): 96-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26544541

RESUMO

UNLABELLED: In this study, yeasts and lactic acid bacteria (LAB) were isolated from coffee fruits and identified via biochemical and molecular approaches. The isolates represented the Pichia, Debaryomyces, Candida, Clavispora, Yarrowia, Sporobolomyces, Klyveromyces, Torulaspora and Lactobacillus genera. Four isolates, namely Pichia fermentans LPBYB13, Sporobolomyces roseus LPBY7E, Candida sp. LPBY11B and Lactobacillus brevis LPBB03, were found to have the greatest antagonist activity against an ochratoxigenic strain of Aspergillus westerdijkiae on agar tests and were selected for further characterization. Applications of P. fermentans LPBYB13 in coffee cherries artificially contaminated with A. westerdijkiae showed efficacy in reducing ochratoxin A (OTA) content up to 88%. These results highlight that P. fermentans LPBYB13 fulfils the principle requirements of an efficient biological control of aflatoxigenic fungi in coffee beans and may be seen as a reliable candidate for further validation in field conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies based on microbial ecology and antagonistic interactions are important for the development of new strategies in controlling aflatoxin contamination of crops and are relevant to further biotechnological applications. This study shows that coffee fruit is a potential source for the isolation of microbial strains with antifungal ability. A new yeast strain, Pichia fermentans LPBYB13, showed efficacy in reducing growth and ochratoxin A production of Aspergillus westerdijkiae in coffee beans. Our results should encourage the use of this yeast strain on a large scale for biocontrol of aflatoxigenic fungi in coffee beans.


Assuntos
Aflatoxinas/biossíntese , Antifúngicos/isolamento & purificação , Aspergillus/crescimento & desenvolvimento , Agentes de Controle Biológico/isolamento & purificação , Café/microbiologia , Contaminação de Alimentos/prevenção & controle , Ocratoxinas/biossíntese , Agentes de Controle Biológico/metabolismo , Candida/isolamento & purificação , Candida/metabolismo , Frutas/microbiologia , Ácido Láctico/metabolismo , Levilactobacillus brevis/isolamento & purificação , Levilactobacillus brevis/metabolismo , Pichia/isolamento & purificação , Pichia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA