Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 69(5): e2863-e2875, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35729863

RESUMO

Bat coronaviruses (Bat-CoVs) represent around 35% of all virus genomes described in bats. Brazil has one of the highest mammal species diversity, with 181 species of bats described so far. However, few Bat-CoV surveillance programmes were carried out in the country. Thus, our aim was to jevaluate the Bat-CoV diversity in the Atlantic Forest, the second biome with the highest number of bat species in Brazil. We analysed 456 oral and rectal swabs and 22 tissue samples from Atlantic Forest bats, detecting Alphacoronavirus in 44 swab samples (9.6%) targeting the RdRp gene from seven different bat species, three of which have never been described as Bat-CoV hosts. Phylogenetic analysis of the amino acid (aa) sequences coding the RdRp gene grouped the sequences obtained in our study with Bat-CoV previously detected in identical or congeneric bat species, belonging to four subgenera, with high aa identity (over 90%). The RdRp gene was also detected in three tissue samples from Diphylla ecaudata and Sturnira lilium, and the partial S gene was successfully sequenced in five tissues and swab samples of D. ecaudata. The phylogenetic analysis based on the partial S gene obtained here grouped the sequence of D. ecaudata with CoV from Desmodus rotundus previously detected in Peru and Brazil, belonging to the Amalacovirus subgenus, with aa identity ranging from 73.6% to 88.8%. Our data reinforce the wide distribution of Coronaviruses in bats from Brazil and the novelty of three bats species as Bat-CoV hosts and the co-circulation of four Alphacoronavirus subgenera in Brazil.


Assuntos
Alphacoronavirus , Quirópteros , Infecções por Coronavirus , Coronavirus , Alphacoronavirus/genética , Aminoácidos/genética , Animais , Brasil/epidemiologia , Coronavirus/genética , Infecções por Coronavirus/veterinária , Florestas , Variação Genética , Genoma Viral , Filogenia , RNA Polimerase Dependente de RNA
2.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215796

RESUMO

Bats are widespread mammals of the order Chiroptera. They are key for ecosystem functioning, participating in crucial processes. Their unique ability amongst mammals to fly long distances, their frequently large population sizes, and their longevity favor infectious agent persistence and spread. This includes a large variety of viruses, encompassing many important zoonotic ones that cause severe diseases in humans and domestic animals. Despite this, the understanding of the viral ecological diversity residing in bat populations remains unclear, which complicates the determination of the origins of zoonotic viruses. To gain knowledge on the viral community of a widely distributed insectivorous bat species, we characterized the guano virome of a native Chilean bat species (Myotis chiloensis (Waterhouse, 1840)). By applying a novel enrichment strategy, we were able to secure a consequent percentage of viral reads, providing unprecedented resolution for a bat virome. This in turn enabled us to identify and assemble a new bat alphacoronavirus from Chilean bats closely related to PEDV, an important viral pathogen with high mortality rates in suckling piglets. This study highlights the importance of applying and improving high-resolution virome studies in this vital order to ultimately enhance epidemiological surveillance for potentially zoonotic pathogens.


Assuntos
Alphacoronavirus/genética , Quirópteros/virologia , Genoma Viral/genética , Viroma , Alphacoronavirus/classificação , Alphacoronavirus/isolamento & purificação , Animais , Chile , Fezes/virologia , Filogenia , RNA Viral/genética , Viroma/genética
4.
Transbound Emerg Dis ; 68(3): 987-992, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32725795

RESUMO

The novel SARS-CoV-2 coronavirus has attracted attention due to the high number of human cases around the world. It has been proposed that this virus originated in bats, possibly transmitted to humans by an intermediate host, making bats a group of great interest during this outbreak. Almost 10% of the world's bat species inhabit Mexico, and 14 previous novel CoVs have been recorded in Mexican bats. However, the phylogenetic relationships between these viruses and the novel coronavirus are unknown. The aim of this communication was therefore to describe the phylogenetic relationships between Mexican bat-CoVs and SARS-CoV-2. We showed that Mexican bat-CoVs sequences are grouped into two genera, Alphacoronavirus and Betacoronavirus, and the new coronavirus is an independent clade within Betacoronavirus. Due to the diversity of CoVs in Mexican bats, the propensity of CoVs to shift hosts, the invasion mechanisms described for this new virus, and previous reports of animals infected by SARS-CoV-2, the risk of possible infection from humans to Mexican bats should not be discarded and warrants further analyses. To avoid future zoonotic infectious diseases and to limit persecution of bats, we urge researchers and the general population to take extreme precautions and avoid manipulation of bats during the current and future similar outbreaks.


Assuntos
COVID-19/virologia , Quirópteros/virologia , SARS-CoV-2/genética , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , COVID-19/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Coronaviridae/classificação , Coronaviridae/genética , Evolução Molecular , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/classificação , Zoonoses/epidemiologia
5.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658964

RESUMO

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Assuntos
Alphacoronavirus/genética , Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral , Pandemias , Pneumonia Viral/epidemiologia , Vírus Reordenados/genética , Alphacoronavirus/classificação , Alphacoronavirus/patogenicidade , Animais , Betacoronavirus/classificação , Betacoronavirus/patogenicidade , Evolução Biológica , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Ilhas de CpG , Cães , Eutérios/virologia , Humanos , Evasão da Resposta Imune/genética , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Vírus Reordenados/classificação , Vírus Reordenados/patogenicidade , SARS-CoV-2 , Replicação Viral
6.
Microb Ecol ; 79(1): 203-212, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31144002

RESUMO

Bats are flying mammals distributed worldwide known to host several types of Coronavirus (CoV). Since they were reported as the probable source of spillover of highly pathogenic CoV into the human population, investigating the circulation of this virus in bats around the world became of great importance. We analyzed samples from 103 bats from two distinct regions in Brazil. Coronavirus from the Alphacoronavirus genus was detected in 12 animals, 11 from São José do Rio Preto-SP region and 1 from Barreiras-BA region, resulting in a prevalence of 17.18% and 2.56% respectively. The virus was detected not only in intestines but also in lungs and liver. Phylogenetic analysis based on nsP12 genomic region suggests that the sequences group according to host family and sampling location. Studies on the circulation of these viruses in bats remain important to understand the ecology and evolutionary relationship of these pathogens.


Assuntos
Alphacoronavirus/isolamento & purificação , Quirópteros/virologia , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Evolução Biológica , Brasil , Genoma Viral , Intestinos/virologia , Fígado/virologia , Pulmão/virologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA