Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 41(2): 292-300, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29139145

RESUMO

Monepantel (MNP) is a novel anthelmintic compound launched into the veterinary pharmaceutical market. MNP is not licenced for use in dairy animals due to the prolonged elimination of its metabolite monepantel sulphone (MNPSO2 ) into milk. The goal of this study was to evaluate the presence of potential in vivo drug-drug interactions affecting the pattern of milk excretion after the coadministration of the anthelmintics MNP and oxfendazole (OFZ) to lactating dairy cows. The concentrations of both parent drugs and their metabolites were measured in plasma and milk samples by HPLC. MNPSO2 was the main metabolite recovered from plasma and milk after oral administration of MNP. A high distribution of MNPSO2 into milk was observed. The milk-to-plasma ratio (M/P ratio) for this metabolite was equal to 6.75. Conversely, the M/P ratio of OFZ was 1.26. Plasma concentration profiles of MNP and MNPSO2 were not modified in the presence of OFZ. The pattern of MNPSO2 excretion into milk was also unchanged in animals receiving MNP plus OFZ. The percentage of the total administered dose recovered from milk was 0.09 ± 0.04% (MNP) and 2.79 ± 1.54% (MNPSO2 ) after the administration of MNP alone and 0.06 ± 0.04% (MNP) and 2.34 ± 1.38% (MNPSO2 ) after the combined treatment. The presence of MNP did not alter the plasma and milk disposition kinetics of OFZ. The concentrations of the metabolite fenbendazole sulphone tended to be slightly higher in the coadministered group. Although from a pharmacodynamic point of view the coadministration of MNP and OFZ may be a useful tool, the presence of OFZ did not modify the in vivo pharmacokinetic behaviour of MNP and therefore did not result in reduced milk concentrations of MNPSO2 .


Assuntos
Aminoacetonitrila/análogos & derivados , Anti-Helmínticos/farmacocinética , Benzimidazóis/farmacocinética , Aminoacetonitrila/administração & dosagem , Aminoacetonitrila/análise , Aminoacetonitrila/sangue , Aminoacetonitrila/farmacocinética , Animais , Anti-Helmínticos/administração & dosagem , Benzimidazóis/administração & dosagem , Benzimidazóis/análise , Benzimidazóis/sangue , Bovinos , Cromatografia Líquida de Alta Pressão/veterinária , Interações Medicamentosas , Quimioterapia Combinada/veterinária , Feminino , Leite/química
2.
N Z Vet J ; 65(4): 176-184, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28415922

RESUMO

Anthelmintic drugs require effective concentrations to be attained at the site of parasite location for a certain period to assure their efficacy. The processes of absorption, distribution, metabolism and excretion (pharmacokinetic phase) directly influence drug concentrations attained at the site of action and the resultant pharmacological effect. The aim of the current review article was to provide an overview of the relationship between the pharmacokinetic features of different anthelmintic drugs, their availability in host tissues, accumulation within target helminths and resulting therapeutic efficacy. It focuses on the anthelmintics used in cattle and sheep for which published information on the overall topic is available; benzimidazoles, macrocyclic lactones and monepantel. Physicochemical properties, such as water solubility and dissolution rate, determine the ability of anthelmintic compounds to accumulate in the target parasites and consequently final clinical efficacy. The transcuticular absorption process is the main route of penetration for different drugs in nematodes and cestodes. However, oral ingestion is a main route of drug entry into adult liver flukes. Among other factors, the route of administration may substantially affect the pharmacokinetic behaviour of anthelmintic molecules and modify their efficacy. Oral administration improves drug efficacy against nematodes located in the gastroinestinal tract especially if parasites have a reduced susceptibility. Partitioning of the drug between gastrointestinal contents, mucosal tissue and the target parasite is important to enhance the drug exposure of the nematodes located in the lumen of the abomasum and/or small intestine. On the other hand, large inter-animal variability in drug exposure and subsequent high variability in efficacy is observed after topical administration of anthelmintic compounds. As it has been extensively demonstrated under experimental and field conditions, understanding pharmacokinetic behaviour and identification of different factors affecting drug activity is important for achieving optimal parasite control and avoiding selection for drug resistance. The search for novel alternatives to deliver enhanced drug concentrations within target helminth parasites may contribute to avoiding misuse, and prolong the lifespan of existing and novel anthelmintic compounds in the veterinary pharmaceutical market.


Assuntos
Aminoacetonitrila/análogos & derivados , Anti-Helmínticos/farmacocinética , Benzimidazóis/farmacocinética , Doenças dos Bovinos/tratamento farmacológico , Helmintíase Animal/tratamento farmacológico , Lactonas/farmacocinética , Doenças dos Ovinos/tratamento farmacológico , Aminoacetonitrila/farmacocinética , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Cestoides/efeitos dos fármacos , Haemonchus/efeitos dos fármacos , Helmintos/efeitos dos fármacos , Ruminantes , Salicilanilidas/farmacocinética , Ovinos , Doenças dos Ovinos/parasitologia
3.
J Vet Pharmacol Ther ; 39(5): 488-96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26923886

RESUMO

Monepantel (MNP) is a new amino-acetonitrile derivative anthelmintic drug used for the treatment of gastrointestinal (GI) nematodes in sheep. The present work investigated the main enzymatic pathways involved in the hepatic biotransformation of MNP in sheep and cattle. The metabolic stability in ruminal fluid of both the parent drug and its main metabolite (monepantel sulphone, MNPSO2 ) was characterized as well. Additionally, the relative distribution of both anthelmintic molecules between the fluid and particulate phases of the ruminal content was studied. Liver microsomal fractions from six (6) rams and five (5) steers were incubated with a 40 µm of MNP. Heat pretreatment (50 °C for 2 min) of liver microsomes was performed for inactivation of the flavin-monooxygenase (FMO) system. Additionally, MNP was incubated in the presence of 4, 40, and 80 µm of methimazole (MTZ), a FMO inhibitor, or equimolar concentrations of piperonyl butoxide (PBx), a well-known general cytochrome P450 (CYP) inhibitor. In both ruminant species, MNPSO2 was the main metabolite detected after MNP incubation with liver microsomes. The conversion rate of MNP into MNPSO2 was fivefold higher (P < 0.05) in sheep (0.15 ± 0.08 nmol/min·mg) compared to cattle. In sheep, the relative involvement of both FMO and CYP systems (FMO/CYP) was 36/64. Virtually, only the CYP system appeared to be involved in the production of MNPSO2 in cattle liver. Methimazole significantly reduced (41 to 79%) the rate of MNPSO2 production in sheep liver microsomes whereas it did not inhibit MNP oxidation in cattle liver microsomes. On the other hand, PBx inhibited the production of MNPSO2 in liver microsomes of both sheep (58 to 98%, in a dose-dependent manner) and cattle (almost 100%, independently of the PBx concentration added). The incubation of MNP and MNPSO2 with ruminal contents of both species showed a high chemical stability without evident metabolism and/or degradation as well as an extensive degree of adsorption (83% to 90%) to the solid phase of the ruminal content. Overall, these results are a further contribution to the understanding of the metabolic fate of this anthelmintic drug in ruminants.


Assuntos
Aminoacetonitrila/análogos & derivados , Anti-Helmínticos/farmacocinética , Fígado/metabolismo , Rúmen/metabolismo , Aminoacetonitrila/farmacocinética , Animais , Biotransformação , Bovinos/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Flavinas/farmacocinética , Masculino , Metimazol/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Butóxido de Piperonila/farmacologia , Ovinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA