Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Braz J Med Biol Res ; 57: e13429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39082579

RESUMO

The chemical structure of piperidine has a unique ability to combine with other molecular fragments. This fact makes it possible to actively use it as an effective basis for the creation of new drug-like substances. Thus, the aim of the current investigation was to study the acute toxicity, local anesthetic potency, and antiarrhythmic activity of the two new synthesized piperidine derivatives under laboratory codes LAS-286 and LAS-294 (local anesthetic substances). The Bulbring & Wajda animal model and method of determining the nociception threshold during electrical stimulation was used to investigate the action of the substance during infiltration anesthesia. An antiarrhythmic activity was observed by the aconitine-induced rat arrhythmia model. Additionally, these compounds were studied in relation to molecular docking to delineate the structure-activity relationships. The tested piperidine derivatives had a low toxicity in the subcutaneous and intravenous administration routes. The experimental results showed a higher prolonged and pronounced local anesthetic activity for LAS-286 at a 0.5% concentration, compared to the reference preparations. The low dosage of 0.1 mg/kg of LAS-294 demonstrated a pronounced preventive antiarrhythmic effect in 90% of cases on the development of mixed arrhythmia, caused by aconitine. The results of molecular docking confirmed a higher binding affinity of the tested piperidines with the Nav1.4 and Nav1.5 macromolecules. The results of the present study are very promising, because these piperidines have shown a high biological activity, which can suggest a potential therapeutic application in the future.


Assuntos
Anestésicos Locais , Antiarrítmicos , Simulação de Acoplamento Molecular , Piperidinas , Animais , Antiarrítmicos/farmacologia , Anestésicos Locais/farmacologia , Piperidinas/farmacologia , Piperidinas/química , Ratos , Masculino , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Relação Estrutura-Atividade , Ratos Wistar , Modelos Animais de Doenças
3.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619735

RESUMO

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Assuntos
Potenciais de Ação , Amiodarona , Antiarrítmicos , Arritmias Cardíacas , Átrios do Coração , Miócitos Cardíacos , Ratos Wistar , Animais , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Masculino , Humanos , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Concentração de Íons de Hidrogênio , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293 , Sódio/metabolismo , Técnicas de Patch-Clamp , Venenos de Cnidários/farmacologia
4.
Eur J Pharmacol ; 960: 176127, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37858835

RESUMO

INTRODUCTION: Amiodarone (AMD) is a clinically used drug to treat arrhythmias with significant effect upon the cardiac sodium channel Nav1.5. AMD has a pKa of 6.56, and changes in extracellular pH (pHe) may alter its pharmacological properties. Here we explored how changes in pHe impacts the pharmacological properties of AMD upon human-Nav1.5-sodium-current (INa) and in ex vivo rat hearts. METHODS: Embryonic-human-kidney-cells (HEK293) were used to transiently express the human alpha-subunit of NaV1.5 channels and the isolated heart of Wistar rats were used. Patch-Clamp technique was deployed to study INa and for electrocardiogram (ECG) evaluation the ex vivo heart preparation in the Langendorff system was applied. RESULTS: The potency of AMD upon peak INa was ∼25x higher in pHe 7.0 when compared to pHe 7.4. Voltage dependence for activation did not differ among all groups. AMD shifted the steady-state inactivation curve to more hyperpolarized potentials, with similar magnitudes for both pHes. The recovery from INa inactivation was delayed in the presence of AMD with similar profile in both pHes. Interestingly, the use-dependent properties of AMD was distinct at pHe 7.0 and 7.4. Finally, AMD was able to change the ex vivo ECG profile, however at pHe 7.0+AMD a larger increase in the RR and QRS duration and in the QT interval when compared to pHe 7.4 was found. CONCLUSIONS: The pharmacological properties of AMD upon NaV1.5 and isolated heart preparation depends on the pHe and its use in vivo during extracellular acidosis may cause a distinct biological response in the heart tissue.


Assuntos
Amiodarona , Animais , Ratos , Humanos , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Células HEK293 , Ratos Wistar , Canais de Sódio , Concentração de Íons de Hidrogênio , Canal de Sódio Disparado por Voltagem NAV1.5
5.
Braz J Med Biol Res ; 56: e12073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722655

RESUMO

Procainamide (PA) and its in vivo metabolite, N-acetylprocainamide (NAPA), display some pharmacological differences. Although it is agreed that PA is a class IA antiarrhythmic, it has been reported that NAPA is a pure class III antiarrhythmic that affects only the repolarizing phase of the cardiac action potential. This last concept, observed exclusively in dogs, gained wide acceptance, appearing in classic pharmacology textbooks. However, evidence in species such as mice and rats indicates that NAPA can affect cardiac Na+ channels, which is unexpected for a pure class III antiarrhythmic drug. To further clarify this issue, the effects of PA (used as a reference drug) and NAPA on the maximum upstroke velocity (Vmax) and half-decay time (HDT) of the cardiac action potential were examined in the isolated right papillaris magnus of the guinea pig heart. Both PA and NAPA affected Vmax at lower concentrations than required to affect HDT, and NAPA had weaker effects on both variables. Thus, NAPA displayed typical class IA antiarrhythmic behavior. Therefore, the concept that NAPA is a pure class III antiarrhythmic drug is more species-dependent than previously envisioned. In addition, we demonstrated that the differential pharmacology of PA and NAPA is explainable, in molecular terms, by steric hindrance of the effects of NAPA and the greater number of potent aromatic-aromatic and cation π interactions with Na+ or K+ cardiac channels for PA.


Assuntos
Acecainida , Procainamida , Cobaias , Animais , Cães , Camundongos , Ratos , Procainamida/farmacologia , Músculos Papilares , Antiarrítmicos/farmacologia , Potenciais de Ação
6.
Basic Clin Pharmacol Toxicol ; 132(5): 359-368, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36799082

RESUMO

Atrial arrhythmias are a hallmark of heart diseases. The antiarrhythmic drug ranolazine with multichannel blocker properties is a promising agent to treat atrial arrhythmias. We therefore used the rat model of monocrotaline-induced pulmonary-hypertension to assess whether ranolazine can reduce the incidence of ex vivo atrial arrhythmias in isolated right atrium. Four-week-old Wistar rats were injected with 50 mg/kg of monocrotaline, and isolated right atrium function was studied 14 days later. The heart developed right atrium and right ventricular hypertrophy, and the ECG showed an increased P wave duration and QT interval, which are markers of the disease. Moreover, monocrotaline injection caused enhanced chronotropism and faster kinetics of contraction and relaxation in isolated right atrium. Additionally, in a concentration-dependent manner, ranolazine showed chronotropic and ionotropic effects upon isolated right atrium, with higher potency in the control when compared with experimental model. Using a burst pacing protocol, the isolated right atrium from the monocrotaline-treated animals was more susceptible to develop arrhythmias, and ranolazine was able to attenuate the phenotype. Thus, we concluded that the rat model of monocrotaline-induced pulmonary-hypertension develops right atrium remodelling, which increased the susceptibility to present ex vivo atrial arrhythmias, and the antiarrhythmic drug ranolazine ameliorated the phenotype.


Assuntos
Fibrilação Atrial , Hipertensão Pulmonar , Ratos , Animais , Ranolazina/efeitos adversos , Antiarrítmicos/farmacologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/toxicidade , Ratos Wistar , Átrios do Coração , Modelos Animais de Doenças
7.
Arq Bras Cardiol ; 119(2): 294-304, 2022 08.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35946691

RESUMO

BACKGROUND: (-)-Carvone is a monoterpene found in essential oils with antioxidant and anti-inflammatory activity. OBJECTIVE: The aim of this paper was to analyze the antiarrhythmic property of (-)-carvone in the rat heart and its effects on the intracellular Ca2+ signaling. METHODS: The effects of (-)-carvone were evaluated on the ventricular (0.5 mM) and atrial contractility (0.01 - 4 mM) and on electrocardiogram (0.5 mM). Fractional shortening, L-type calcium current (ICa,L) and Ca2+ signaling were measured in the isolated cardiomyocyte (0.5 mM). Antiarrhythmic effect was evaluated in arrhythmia model induced by calcium overload (0.5 mM) (n = 5). P < 0.05 was used as the significance level. RESULTS: In the atrium, (-)-carvone evoked negative inotropism that was concentration-dependent (EC50 0.44 ± 0.11 mM) and decreased the positive inotropism evoked by CaCl2 (0.1 to 8.0 mM) or BAY K8644 (5 to 500 nM), an agonist of L-type Ca2+ channel. In isolated heart, (-)-carvone (0.5 mM) promoted reduction of ventricular contractility (73%) and heart rate (46%), increased PRi (30.7%, time from the onset of the P wave until the R wave) and QTc (9.2%, a measure of the depolarization and repolarization of the ventricles) without changing the QRS complex duration. (-)-Carvone decreased the fractional shortening (61%), ICa,L (79%) and Ca2+ intracellular transient (38%). Furthermore, (-)-carvone showed antiarrhythmic action, verified by decrease of the arrhythmia score (85%) and occurrence of ventricular fibrillation. CONCLUSION: (-)-Carvone decreases Ca2+ entry through L-type Ca2+ channels, reducing the cardiac contractility and intracellular Ca2+, and, therefore, presenting promising antiarrhythmic activity in the rat hearts.


FUNDAMENTO: A (-)-carvona é um monoterpeno encontrado em óleos essenciais com atividade antioxidante e anti-inflamátoria. OBJETIVOS: O objetivo deste estudo foi analisar a propriedade antiarrítmica da (-)-carvona no coração de rato e seus efeitos sobre a sinalização de Ca+2 intracelular. MÉTODOS: Os efeitos da (-)-carvona foram avaliados sobre a contratilidade atrial (0,01 ­ 4 mM) e ventricular (0,5 mM), e no eletrocardiograma (0,5mM). A fração de encurtamento, a corrente de cálcio do tipo L (ICa,L) e a sinalização de Ca+2 foram medidas no cardiomiócito isolado (0,5 mM). O efeito antiarrítmico foi avaliado no modelo de arritmia induzida por sobrecarga de cálcio (0,5 mM) (n = 5). Um p < 0,05 foi adotado como nível de significância estatística. RESULTADOS: No átrio, a (-)-carvona causou inotropismo negativo de maneira concentração-dependente (EC50 0,44 ± 0,11 mM) e diminuiu o inotropismo positivo induzido pelo CaCl2 (0,1 ­ 8,0 mM) e BAY K8644 (5 - 500 nM), um agonista de canal de cálcio do tipo L. Em coração isolado, a (-)-carvona (0,5mM) reduziu a contratilidade ventricular em 73% e a frequência cardíaca (em 46%), aumentou o Pri (30,7%, tempo desde o início da onda P até a onda R) e o QTc (9,2%, uma medida de despolarização e repolarização dos ventrículos), sem mudar a duração do complexo QRS. A (-)-carvona diminuiu a fração de encurtamento (61%), a (ICa,L) (79%) e o transiente intracelular de Ca+2 (38%). Além disso, a (-)-carvona apresentou ação antiarrítmica, identificada pela redução do escore de arritmia (85%) e ocorrência de fibrilação ventricular. CONCLUSÃO: A (-)-carvona reduz a entrada de Ca+2 através de canais de Ca+2 do tipo L e, assim, diminui a contratilidade cardíaca e o Ca+2 intracelular e apresenta promissora atividade antiarrítmica no coração de ratos.


Assuntos
Sinalização do Cálcio , Cálcio , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Cálcio/metabolismo , Monoterpenos Cicloexânicos , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Ratos
8.
Mol Pharmacol ; 99(6): 448-459, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824187

RESUMO

Nav1.5-derived Na+ current (INa) exerts a pivotal role in the depolarization phase of cardiomyocytes' action potential, and, therefore, changes in INa can contribute to fatal arrhythmias. Nav1.5 displays naturally occurring ethnicity-related polymorphisms, which might alter the functioning and pharmacology of the channel. Some studies have shown how single-nucleotide polymorphism can change the response to antiarrhythmic drugs. Investigations on the role of Nav1.5 in arrhythmogenesis associated with its functional polymorphisms are currently growing as well as the possible variability in the antiarrhythmic pharmacotherapy among ethnic groups. The influence of the ethnicity-related polymorphisms (S524Y, S1103Y, R1193Q, V1951L) on the responsiveness, selectivity, and pharmacological efficacy of the clinically used antiarrhythmic amiodarone (AMIO) is not completely known. Our objectives were to analyze biophysical and pharmacological aspects of four ethnicity-related polymorphisms before and after exposure to AMIO. Polymorphisms caused reduced AMIO potency compared with wild type (WT), which can vary by up to 4× between them. AMIO shifted the voltage dependency for current inactivation without significant effect in voltage-dependent activation to a similar extent in WT and polymorphisms. The recovery from inactivation was altered between the polymorphisms when compared with WT. Finally, the use dependency of AMIO differed between studied groups, especially at a more depolarized cell membrane. Thus, our work may guide future studies focusing on the efficiency of AMIO in treating different arrhythmias and establish more individualized guidelines for its use depending on the Nav1.5 polymorphism after validating our findings using in vivo studies. SIGNIFICANCE STATEMENT: Sodium voltage-gated channel α subunit 5 (SCN5A) gene encodes the α subunit of Nav1.5, the main cardiac voltage-gated Na+ channel. Interestingly, ethnicity-related polymorphisms are found in SCN5A. Amiodarone is used in clinical practice, and some of its effects are attributed to interaction with Nav1.5. Important, amiodarone efficacy is variable among patients. Here we show that ethnicity-related SCN5A polymorphisms lead to altered Nav1.5-amiodarone interaction, which may be the cause for the variable efficacy observed in clinical usage of amiodarone.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Etnicidade/genética , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Polimorfismo de Nucleotídeo Único , Células HEK293 , Humanos
10.
J Cardiovasc Pharmacol ; 76(2): 164-172, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32453071

RESUMO

The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.


Assuntos
1-Naftilamina/análogos & derivados , Alcanos/farmacologia , Antiarrítmicos/farmacologia , Fibrilação Atrial/prevenção & controle , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Compostos de Quinolínio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , 1-Naftilamina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Cães , Feminino , Células HEK293 , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA